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Abstract
Recent results in the theory of turbulent momentum transport and the origins of intrinsic rotation are summarized.
Special attention is focused on aspects of momentum transport critical to intrinsic rotation, namely the residual
stress and the edge toroidal flow velocity pinch. Novel results include a systematic decomposition of the physical
processes which drive intrinsic rotation, a calculation of the critical external torque necessary to hold the plasma
stationary against the intrinsic residual stress, a simple model of net velocity scaling which recovers the salient
features of the experimental trends and the elucidation of the impact of the particle flux on the net toroidal velocity
pinch. Specific suggestions for future experiments are offered.

PACS numbers: 52.35.Ra, 52.30.Gz, 52.25.Fi, 52.35.Kt

1. Introduction

The needs for understanding of, and predictive capacity for,
both the off-diagonal flux of toroidal angular momentum
and the origins of spontaneous or intrinsic rotation are now
well established and accepted. Momentum transport has
long been a subject of interest. Historically, the trend
χφ ∼ χi was predicted theoretically [1] and observed in
pioneering experimental studies [2]. Subsequent observations
of departures of χφ/χi from unity suggested the possibility
of off-diagonal contributions to the momentum flux. This
perception was reinforced by several more detailed studies
of the momentum flux [3], including dynamic modulation
experiments [4]. Fluctuation studies also have indicated
a link between sheared E × B flows and the parallel
Reynolds stress [5]. In a related vein, the phenomenon of
spontaneous or intrinsic rotation is observed in nearly all
tokamaks. In L-mode, the observed trends indicate that
intrinsic rotation is strongly correlated with scrape-off-layer

6 Present address: CEA Cadarache, 13108 St Paul Lez Durance, France.

(SOL) asymmetry-induced flows [6]. H-mode plasmas display
clearer empirical tendencies, namely, that [7]:

1. rotation is typically co-current
2. the increment in central velocity �vφ at the LH mode

transition scales with the increment in stored energy as
�vφ ∼ �w/Ip, with no observed dependence on ρ∗ or
ν∗. The Alfvenic Mach number at saturation scales as
MA ∼ βN

3. the off-set value of vφ in a co-to-counter torque scan
matches the value of the intrinsic rotation. Moreover, the
plasma can be held stationary against its tendency to rotate
spontaneously by applying a torque in the counter-current
direction [8].

Observations suggest that rotation is initiated at the edge and
builds inwards. Inversions at the L–H transition are possible.
Intrinsic rotation is also possible in the core. In particular,
values of χφ and the momentum pinch velocity V , inferred
from perturbative experiments, cannot fit the measured 〈vφ〉
profiles of steady-state plasma in JT-60U [9], and momentum
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transport bifurcations are observed in torque-free plasmas in
TCV [10] and Alcator C-Mod [11].

The key physics quantity required to confront this body
of observational evidence is the turbulent momentum flux. In
general, the mean field momentum flux driven by electrostatic
turbulence is given by (see, for example, [12] for a discussion
of neoclassical transport processes)

�r,φ = 〈n〉〈̃vr ṽφ〉 + 〈̃vr ñ〉〈vφ〉 +
〈̃
nṽr ṽφ

〉
. (1)

Here the first term is the toroidal Reynolds stress and the second
is the convective flux, hereafter neglected, unless otherwise
noted. The third term, 〈̃nṽr ṽφ〉, represents the nonlinear
flux (as opposed to quasi-linear), driven by processes such as
mode–mode coupling and turbulence spreading. It is hereafter
neglected as beyond the scope of this paper. However, given
the strongly nonlinear processes at work in generating rotation,
we comment that confronting the nonlinear flux may ultimately
be required. The Reynolds stress may be further decomposed
as [13]

〈̃vr ṽφ〉 = −χφ

∂〈vφ〉
∂r

+ V 〈vφ〉 + �R
r,φ, (2)

where χφ is the turbulent viscosity, V is the convective velocity
(i.e. the velocity pinch) and �R

r,φ is the residual stress. Note
that χφ and V have well-known analogues in the theory of the
particle flux, while �R

r,φ does not. In this paper, we discuss
the status of our current understanding of χφ , V and �R

r,φ and
the physics of turbulent transport of toroidal momentum and
intrinsic rotation. The critical issues which are defined by the
body of phenomenology which we address are:

1. What is the general structure of the turbulent momentum
flux and the physics of its constituents?

2. what is the origin of intrinsic rotation, i.e. how can a
plasma self-accelerate from rest? How is this related
to residual stress? Can we predict the external torque
required to cancel the intrinsic (i.e. self-generated)
rotation?

3. In the event that intrinsic rotation originates from the
inward convection of a flow at the plasma boundary, what
is the physics of the pinch and how is it related to the
corresponding particle flux?

4. What is the physics of the Rice scaling? Given the
correlation between Rice scaling and H-mode, what is the
influence of the pedestal physics on intrinsic rotation?

In the rest of this paper we report on progress towards answers
to these questions. In section 2—which addresses issue 1—we
survey the basic constituents of the turbulent momentum flux
and their underlying physics. In section 3—which addresses
issue 2—we discuss the physics of the residual stress, which is
the most unusual and counter-intuitive element of the turbulent
momentum flux, but also the piece most important to intrinsic
rotation. In section 4—which addresses issue 4—we outline a
simple model which captures many of the basic scaling trends
for intrinsic rotation. In section 5—which addresses issue 3—
we elucidate the role of the particle flux and its impact on
the toroidal velocity pinch. Section 6 consists of a summary,
discussion of suggested experiments and brief comments on
possible future work.

2. Survey of turbulent momentum flux physics

The turbulent viscosity χφ is now relatively well understood.
As was realized 20 years ago [1], χφ is closely related to the
ion thermal diffusivity χi for drift wave turbulence. Recent
simulation [14] and theory [15] works have discovered that
near ITG marginality, when transport is dominated by the
resonant scattering of slightly suprathermal ions (with s =
ω/k‖vThi ∼ 2), then

χφ

χi
≈ 〈s2〉(

1 + 〈s2〉/2 + 〈s4〉/2
) , (3)

where the average is to be taken over the mean distribution
function. Here the analysis used to derive equation (3)
neglected toroidal coupling effects. The simulations reported
in [14] retained these, however, and appeared to be consistent
with the reduced scope of the model utilized in [15]. This
reveals that in stiff profile regimes, the intrinsic Prandtl number
Pr �= 1, but rather Pr ∼ 0.2 → 0.5, due to the inherent
difference between wave–particle auto-correlation times for ṽφ

and T̃i. Here, it is important to note that the intrinsic Prandtl
number is defined by the ratio of the purely diffusive fluxes, and
differs from the conventionally quoted ‘raw’ Prandtl number
Pr ∼ |�r,φ/∂〈vφ〉/∂r|/|Q/∂〈Ti〉/∂r|, defined without regard
to the presence of non-diffusive fluxes.

The past two years have witnessed intensive interest in and
study of the convective momentum velocity. Recent detailed
theoretical work on the momentum pinch is reported in [16–
18]. In general, the toroidal pinch may be decomposed into a
turbulent equipartition (TEP) and thermoelectric (TH) piece

V = VTEP + VTH. (4)

The TEP convection velocity is purely inward (corresponding
to a pinch) and is robust and mode independent.

Like the TEP pinch for density, the origin of the TEP
pinch is in the compressibility of the E × B velocity in
toroidal geometry (∇ · VE×B �= 0), so that magnetically
weighted angular momentum V‖R/B2 (rather than simply
nV‖R) is locally conserved. Thus, it is no surprise
that the TEP momentum and particle pinches are strongly
correlated. The TEP pinch has been derived from detailed
gyrokinetic analysis [16, 17] and general considerations of
angular momentum homogenization [18]. For a stationary
profile in the absence of a residual stress and k‖, VTEP/χφ ≈
−B2/Rd/dr(R/B2) ≈ −3/R, according to the definition
with respect to 〈vφ〉 in equation (2).

Extending the definition in [16], for k‖ = 0, the
thermoelectric velocity VTH is given by

VTH = −
〈∑

k

Re

ṽ∗
r

(
4ωdi +

v2
Thi

〈vφ〉k
Tor
‖

)
T̃i

−i (ω − 4ωdi + i�ωT)

〉
. (5)

Possible double counting of effects of k‖ here can be
avoided by separating its contribution to residual stress and the
thermal pinch based on their physical origins, i.e. the E × B
flow shear effect versus the toroidal effect.
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The long wavelength limit (k⊥ρi � 1) of the momentum
evolution equation is given by equation (32) of [16]

−i(ω − 4ωdi + i�ωT)ñv‖

= −ṽr

∂

∂r
(n0〈vφ〉) − in0(3〈vφ〉ωdi + v2

Thik‖)
|e|φ̃
Ti

−in0(4〈vφ〉ωdi + v2
Thik‖)

T̃i

Ti
− iv2

Thik‖ñ. (6)

A set of fluid moment equations for subsonic mean flow
(〈vφ〉 � vThi) are completed with the addition of the continuity
equation and the ion temperature evolution equation which
can be derived from [19] based on a conservative gyrokinetic
equation [20] by taking k⊥ρi � 1 limit.

−i(ω − 2ωdi + i�ωT)
ñ

n0

= −iω∗
|e|φ̃
Ti

− 2iωdi
|e|φ̃
Ti

− 2iωdi
T̃i

Ti
, (7)

−i

(
ω − 14

3
ωdi + i�ωT

)
T̃i

T0

= −4

3
iωdi

ñ

n0
− iω∗Ti

|e|φ̃
Ti

− 4

3
iωdi

|e|φ̃
Ti

. (8)

These also agree with equations in [21] in the local limit,
noting that the acoustic branch of ITG mode [22] was not
considered there. Note that while the authors of [21] did not
choose to decompose their results into TEP and thermoelectric
contributions, a decomposition is possible and useful for
physics understanding.

Using equation (8) in the expression for VTH requires
treating the product of two propagators, i.e.

1

ω − 4ωdi + i�ωT
· 1

ω − 14
3 ωdi + i�ωT

.

This quantity can be rewritten as a sum of two propagators

1

ω − 4ωdi + i�ωT
· 1

ω − 14
3 ωdi + i�ωT

= − 3

2ωdi

(
1

ω − 4ωdi + i�ωT
− 1

ω − 14
3 ωdi + i�ωT

)
.

Using this identity, we can write VTH for the k‖ → 0 limit as

VTH = 6(Cφ − Ci)

(
1

Ti

∂Ti

∂r
+

4

3R

(
1 +

Ti

Te

))
−8
(
V

NA,φ

TH − V
NA,i

TH

)
, (9a)

where Cφ and Ci have expressions similar to the quasi-linear
momentum diffusivity and ion thermal diffusivity, respectively,

Cφ =
〈∑

k

Re
|̃vr |2

−i(ω − 4ωdi + i�ωT)

〉
, (9b)

Ci =
〈∑

k

Re
|̃vr |2

−i(ω − 14
3 ωdi + i�ωT)

〉
. (9c)

Here, V
NA,φ

TH and V
NA,i

TH are defined as

V
NA,φ

TH ≡
〈∑

k

Re
−iωdi(̃n

NA/n0)̃v
∗
r

−i(ω − 4ωdi + i�ωT)

〉
, (10a)

V
NA,i

TH ≡
〈∑

k

Re

(
−iωdi

(̃
nNA/n0

)
ṽ∗

r

−i(ω − 14
3 ωdi + i�ωT

)〉
, (10b)

come from the non-adiabatic electron density response,

ñNA

n0
= ñ

n0
− |e|φ̃

Te
. (11)

While a limiting form of the pinch for pure-ITG was
calculated in [21], using equations (6) and (7) only, the
assumptions of k‖ = 0 and the strong mode localization at the
low field side midplane are not compatible. According to our
classification of pinches, a recent numerical calculation [23]
indicates that the kTor

‖ contribution to equation (5) is significant
for ITG modes. Since the ion temperature profile is well
known to be stiff, i.e. cannot be significantly perturbed way
above its marginality product, any scaling trend of thermopinch
based on the fluid equations (without kinetic corrections)
must be examined carefully since near marginal stability,
drift-ITG modes can take on both a resonant and a non-
resonant character. Fluid descriptions can be useful, but higher
moments must be retained.

The third element in the momentum flux is the residual
stress, �R

r,φ [18]. The residual stress is defined as that part
of the Reynolds stress which is not directly proportional
to either ∂〈vφ〉/∂r or 〈vφ〉, i.e. the portion other than the
diffusive and convective flux. Note that the residual stress
is thus that part of 〈̃vr ṽφ〉 which is independent of 〈vφ〉, but
proportional to ∂〈n〉/∂r and/or ∂〈T 〉/∂r . The residual stress
has no counterpart in the theory of the turbulent particle
flux, since momentum can obviously be exchanged between
waves and particles, while density cannot. Note too, that the
thermoelectric convective particle flux 
n ∼ V (∇〈T 〉)〈n〉,
while the residual stress Sφ ∼ ∇〈T 〉, etc but independent of
〈vφ〉. The residual stress defines an effective local internal
toroidal momentum source

∂〈Pφ〉
∂t

= Sφ,internal = − ∂

∂r

(〈n〉�R
r,φ

)
, (12)

and so is crucial to the formation of intrinsic rotation profiles.
The physics of the residual stress is discussed at length in the
next section.

3. Physics of the turbulent residual (radiation) stress

The residual stress �R
r,φ is that part of the Reynolds

stress 〈̃vr ṽφ〉 which remains after turbulent diffusion and
convection are subtracted. Its existence is a necessary
consequence of wave–particle momentum exchange, which
is enforced by outgoing wave boundary conditions even in
a purely fluid theory. Physically, the residual stress �R

r,φ =
�(∇Ti, ∇Te, ∇Pi, ∇Pe, ∇n, . . .) converts part of the driving
heat flux Qi or Qe to a net toroidal flow. Observe that the

3
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residual stress is the only way to spin-up a plasma from rest,
in general,

∂t

∫ a

0

〈
Pφ

〉
dr = −nm

[
χφ

∂
〈
vφ

〉
∂r

+ V
〈
vφ

〉
+ �R

r,φ

]∣∣∣∣∣
a

0

∼= −nm

[
−χφ

∂
〈
vφ

〉
∂r

+ V
〈
vφ

〉
+ �R

r,φ

]∣∣∣∣∣
r=a

, (13a)

for �(0) = 0. Thus for 〈vφ〉 = 0, 〈vφ〉′ = 0, we have

∂t

∫ a

0
〈Pφ〉 dr ∼= −nm�R

r,φ (a) , (13b)

so the radially integrated momentum drive is set by the
pressure, density and temperature gradients at the plasma edge,
acting through the residual stress. Note that a pinch alone
cannot spin-up the plasma from rest, but instead requires some
‘seed’ toroidal flow at the separatrix to initiate rotation, i.e.
it requires 〈vφ(a)〉 �= 0. Of course, the critical pinch for the
determination of the rate of change in the total momentum is
that which acts at r = a. The separatrix boundary condition
on the flow is also critical. The total stress corresponds to a
net momentum flux, which along with the boundary condition
on 〈vφ〉, determines the profile. In particular, for the relevant
prototypical case where 〈vφ(a)〉 = 0 (corresponding to a no-
slip boundary, enforced by strong neutral drag), we have for
zero net momentum flux (corresponding to an intrinsic rotation
solution)

〈vφ(r)〉 = −
∫ a

r

dr ′ �
R
r,φ(r ′)

χφ(r ′)
, (14)

so that �R
r,φ < 0 corresponds to co-rotation while �R

r,φ > 0
corresponds to counter-rotation. Note that either sign of
�R

r,φ can generate a flow. Of course, �R
r,φ(r) can change

sign in radius, and so produce internal flow reversals. The
sign dependence of �R

r,φ should be contrasted with that for
convection, where V > 0 is unfavourable for core profiles
peaked on axis, while V < 0 is favourable. Thus, we see that
�R

r,φ is conceptually distinct from a pinch or other convective
effect.

The micro-physics of the residual stress is governed
by resonant and non-resonant turbulent transport acting in
the presence of broken parallel reflection symmetry (i.e. k‖
symmetry breaking). The calculation of �R

r,φ , in the resonant
limit is discussed in the literature [15]. Here we focus on the
non-resonant or ‘wave’ contribution. Intuitively, this is the
most appealing way to envision the origin of intrinsic rotation,
namely as a consequence of the modulation of an anisotropic
quasi-particle pressure. Taking the turbulent χφ momentum
diffusivity as already determined and ignoring the pinch here,
for simplicity, we see that the mean flow 〈vφ〉 then satisfies

∂t 〈vφ〉 − ∂rχφ∂r〈vφ〉 = −∂r�
wave
r,φ , (15a)

where

�wave
r,φ =

∫
dkvgrk‖N. (15b)

Here, �wave
r,φ is the net radial flux of parallel wave momentum

k‖N . Note that this calculation ignores the distinction between
toroidal and parallel momentum, and so neglects contributions
from the flux of perpendicular wave dynamics projected onto

the toroidal direction. Note that a complete treatment of
this issue will involve analysis of both toroidal and poloidal
rotation, along with the calculation of both parallel and
perpendicular wave momentum fluxes and Reynolds stress. At
present, this is beyond the scope of possibilities. Indeed, it is
first necessary to better understand perpendicular stresses and
poloidal rotation, and only then to proceed to the full coupled
analysis. χφ is simply the ambient turbulent diffusion of
toroidal velocity. The quasi-particle population density is just
N(x, k, t), which obeys the standard wave-kinetic equation,
i.e. equations (28a) and (30a) of [24]. Defining S‖ = δ〈vφ〉′,
the modulation in toroidal velocity shear, we have

∂tS‖ − ∂rχφ∂rS‖ = −∂2
r

∫
dkvgrk‖δN. (16)

The RHS effectively accounts for the quasi-particle induced
residual stress. Formulation of the problem as one of
a modulational interaction is useful for clarifying the
dynamics of flow shear amplification. Note that the edge
boundary condition discussed above guarantees that flow shear
amplification leads to net flow amplification. Linearizing the
wave kinetic equation then yields the population response

δN = τc,mod

[
kθV

′
E

∂〈N〉
∂kr

− vgr

∂〈N〉
∂r

]
. (17)

Note δN is calculated in the spirit of a Chapman–Enskog
expansion for the population of wave packets. Here V ′

E is the
electric field shear modulation and τc,mode is the δN response
correlation time. Thus

�wave
r,φ =

∫
dkk‖vgrτc

{
kθ

∂〈N〉
∂kr

〈VE〉′ − vgr

∂〈N〉
∂r

}
. (18a)

Note that this result assumes γ (+k‖) ≈ γ (−k‖), so symmetry
breaking via directional dependence of growth rate, as in the
parallel shear flow instability [1, 25], is not significant. This
is discussed further in [15]. Note that in general, the parallel
shear flow is not a particularly relevant free energy source. If a
net external torque T ext modulation was retained, the condition
for a stationary state in the presence of the wave stress given
by equation (18a) is easily shown to be

T ext =
∫

dkk‖vgrτc

{
kθ

∂〈N〉
∂kr

〈VE〉′ − vgr

∂〈N〉
∂r

}
a

−nmχφ

∂〈vφ(a)〉
∂r

. (18b)

Several observations are in order here. First note that the
net residual stress is driven by the quasi-particle population
gradients in both kr and r . The kr gradient ∂〈N〉/∂kr ,
induces a stress via shearing when kθ∂vgr/∂kr �= 0, so that
the net kr -space flow is compressible. Note that for drift
waves, kθ∂vgr/∂kr

∼= −2k2
θ ρ

2
s v∗/(1+k2

⊥ρ2
s )2, so the integrated

contribution to the stress is even in kθ and kr , and exhibits
some mode dependence via v∗e. We expect this trend to be
generic. The r-gradient ∂〈N〉/∂r induces a radiative diffusive
inward flux of wave momentum, which may be either co or
counter direction, depending on the sign of k‖. The radiative
diffusion flux ∼ − Dr∂〈P‖〉w/∂r , where 〈P‖〉w is the wave
parallel momentum density and Dr ∼ v2

grτc is the quanta
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diffusivity. Note Dr ∼ DGB. The detailed physics of these
processes is discussed further in [15].

Second, before proceeding to calculate ∂〈vφ(a)〉/∂r-the
edge rotation gradient, we note that

〈VE〉′ = Bθ

|B|
∂〈vφ〉
∂r

+
BT

|B| 〈VE〉′0, (19)

i.e. the net electric field shear is the sum of the contributions
due to toroidal rotation and the other pieces, denoted by 〈VE〉′0.
The latter includes both diamagnetic (i.e. ∇Pi-driven) velocity
shear and poloidal velocity shear. Of course this means that
in the absence of 〈VE〉′0, toroidal velocity shear can feed back
on itself, as in a modulational instability. To see this, note
that since S‖ and δN satisfy equations (16) and (17) and since
equation (19) implies 〈VE〉′ = (Bθ/|B|)S‖ + (BT/|B|)〈VE〉′0,
then in the limit where other drives of �R vanish, i.e. 〈VE〉′0 →
0, ∂〈N〉/∂r → 0, equation (16) reduces to just

(
∂t − ∂rχφ∂r

)
Ŝ‖ = −∂2

r

{∫
dkvgrk‖τc,modkθ

∂ 〈N〉
∂kr

Ŝ‖

}
.

Hence, we see that the growth rate of a shear modulation of
the parallel flow with radial wave number q is just

γq = q2
r

{[∫
dkvgrk‖τc,mod,qr

kθ

∂〈N〉
∂kr

]
− χφ

}
.

For standard drift waves, this may be rewritten as

γq = −q2
r χ

eff
φ

where

χ eff
φ = χφ − 2V∗

∫
dkk‖

(
k2
θ ρ

2
s

(1 + k2
⊥ρ2

s )2

)
τc,mod,qr

kr

∂〈N〉
∂kr

.

Hence we readily see that:

1. the effect of the parallel flow shear-induced modulation
of the residual stress is to augment or renormalize χφ .
Clearly, χ eff

φ > χφ and χ eff
φ < χφ are both possible.

2. χ eff
φ < χφ is clearly symptomatic of the modulational

growth of instability of the test shear. This is not
surprising, since it is well known that modulational
instability of shear flows is a sort of ‘negative viscosity’
phenomenon. This process is also symptomatic of the
generation of toroidal zonal flows.

The toroidal zonal flows discussed above have been
observed in gyrokinetic particle simulation [26, 27]. More
generally, this result suggests that any intrinsic rotation feeds
back on itself via its contribution to electric field shearing,
and so renormalizes the momentum diffusivity χφ . To see
this, observe that plugging equation (19) into equation (18b)
and rewriting gives a modified diffusivity. We refer to this
renormalized diffusivity as χ

φ,R
. Thus, the edge gradient is

given by

∂〈vφ(a)〉
∂r

=
[
Text −

{(∫
dkk‖vgrτckθ

∂〈N〉
∂kr

)
〈VE〉′0

+ Drad
∂〈P‖〉w

∂r

}
a

]/
nmχ

φ,R
(a) (20a)

where

nmχ
φ,R

(a) = nmχφ(a) −
(∫

dkk‖vgrτckθ

∂〈N〉
∂kr

)
a

(20b)

is the ‘renormalized’ χφ which includes self-induced rotation
feedback via 〈VE〉′. Note that the sign of the χφ

renormalization is determined by the product of the group
velocity vgr , the spectral population gradient ∂〈N〉/∂kr (which
is usually negative) and the spectrally weighted k‖. Observe
that the correction to χφ can be positive and so it is
at least conceivable that the observed χφ—deduced, say,
from momentum perturbation experiments—may exceed the
observed χi, χφ > χi, which has been observed in JT-60U
perturbation experiments [28].

Third, observe that equation (20a) defines an effective
critical torque which zeroes the edge velocity gradient, i.e.
T ext

crit for ∂〈Vθ 〉/∂r|a → 0. This may be thought of as defining a
critical torque which exactly cancels the residual stress-driven
intrinsic rotation [15]. Here, the critical torque is

T ext
crit =

{∫
dk
(

k‖vgrτckθ

∂〈N〉
∂kr

)
〈VE〉′0 + Drad

∂〈P‖〉w

∂r

}
a

.

(21)

Note that the critical torque is determined by 〈VE〉′0 (i.e. the
electric field shear due to diamagnetic and poloidal rotation),
the mode propagation velocity (in vgr ), the turbulence
spectrum (in ∂〈N〉/∂kr ), the wave momentum density profile
〈P‖〉w and Drad, τc, etc. Of course, the critical torque
defines the off-set in the linear plot of ∂〈vφ〉/∂r|a versus T ext.
Interestingly, it is renormalized χφ—i.e. χφ,eff—which sets the
slope of this linear relation. Thus, the feedback loop physics
of intrinsic rotation enters more than just the off-set! Finally,
we should recall that if the edge rotation velocity is finite,

∂〈vφ〉
∂r

∣∣∣∣
a

= −1

nmχφ,eff

{
T ext − �R

r,φ|a − V 〈vφ〉|a
}
. (22)

In this case, the edge pinch velocity also enters the
determination of ∂〈vφ〉/∂r|a . Interestingly only the edge
momentum pinch is relevant to intrinsic rotation. We speculate
here that scrape-off-layer (SOL) physics, in general, and SOL
flow effects, in particular [6], couple to core intrinsic rotation
via the edge momentum pinch. The TEP momentum pinch,
discussed in [16], is surely operative at the edge. Analysis
of other possible contributions requires a study of the regime
with collisionless fluid ion and dissipative/collisional electron
dynamics. In particular, it would be interesting to see if a
momentum analogue of the familiar ion-mixing mode density
pinch [29] exists. This is discussed further in section 5. In
closing this section, we note that coupling of intrinsic rotation
to 〈vφ(a)〉 should also manifest itself as a sensitivity of the
critical torque to SOL asymmetry—i.e. T ext

crit should differ
between single null and double null operation.

Virtually all of the results in this discussion are sensitive
to spectrally averaged k‖, i.e. 〈k‖〉. One promising example,
although not unique, is to follow equations (36a) and (36b)
of [15], and balance nonlinear decay with shearing to obtain

〈k‖〉 = −
∫

dk
∂k‖
∂kr

kθ 〈VE〉′ 〈N〉
γNL,k

, (23a)
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where

〈k‖〉 =
∫

dkk‖〈N〉. (23b)

Here γNL,k is the nonlinear decorrelation rate (i.e. inverse mode
lifetime) for wave-vector k. ∂k‖/∂kr �= 0 requires magnetic
shear. This description is equivalent to that developed in real
space, in which the shift of the spectrum off the resonant
surface induced by the electric field shear sets the mean k‖ [30–
33]. Note that equation (23a) suggests a close link between
radial electric field shear and the residual stress contribution to
the momentum flux. This link has been verified by gyrokinetic
simulations performed in [26, 27] (see figures 5 and 6).

4. Simple model for intrinsic rotation scalings

It is interesting to note that equation (20a) effectively states
that ∂〈vφ〉/∂r|a—and thus the net intrinsic rotation—will
increase with 〈VE〉′0. Since 〈VE〉′0 = ∂r(∂〈P 〉/∂r/neB0) −
∂r(〈vθ 〉B0)/|B| increases with edge pressure gradient, one
direct prediction of this theory is a correlation between edge
pressure gradient and intrinsic rotation velocity. This is
qualitatively suggestive of the �〈vφ〉 ∼ �Wp/Ip scaling
proposed by Rice [7], but now expressed in terms of more
physical, local gradient quantities. One can go further and
develop a transport model which evolves the:

(i) toroidal momentum profile, in terms of χφ , V and �R
r,φ

acting along with the external torques,
(ii) density profile, in terms of D, Vn and fueling,

(iii) ion temperature profile, in terms of χ and heating,
(iv) fluctuation intensity, evolved by simple E × B shear-

induced quenching [34].

This model represents a generalized Hinton model [35]. The
model may be solved numerically, and also analytically,
assuming a piecewise linear profile structure. For simplicity
we apply a no-slip boundary condition so that vφ(a) = 0.
Results indicate that the central rotation velocity is determined
primarily by the pedestal velocity, and that the latter scales
as [30, 36]

�〈vφ〉
vThi

∼
(

�rc

a

)(
�ped

a

)
∼ ρα

∗

(
�ped

a

)
. (24)

Here �ped is the pedestal width and �rc is the turbulence
correlation length. Thus, α ∼ 1 corresponds to the Gyro-
Bohm edge turbulence while α ∼ 0 corresponds to Bohm.
The pedestal width is proportional to the pedestal pressure, i.e.
�ped ∼ Pped, so �〈vφ〉 ∼ Pped ∼ �Wp, the increment in the
stored energy, as in the Rice scaling. More interestingly, we
note that if:

(i) the edge turbulence exhibits Bohm scaling, so �rc/a ∼
(ρ∗)0 ∼ 1.

(ii) we assume the Snyder [37] empirical pedestal width
scaling �ped/a ∼ β

1/2
p which recovers the Ip dependence

of the Rice scaling,

we then recover �〈vφ〉/vThi ∼ β
1/2
p which is effectively

equivalent to the Rice scaling �vφ ∼ �Wp/Ip [7, 38].
Interestingly, the unfavourable current scaling of intrinsic
rotation appears as a consequence of the unfavourable current
scaling of the pedestal width. This seems plausible, since

otherwise transport scalings with current are nearly universally
favourable. Note that in this scenario, intrinsic rotation is
strongly tied to pedestal physics, which is also suggested by
the experimental results. The absence of ρ∗ scaling of intrinsic
rotation velocity [7] appears as a consequence of Bohm scaling
of the pedestal turbulence. The persistence of this unfavourable
trend into the regime of ITER parameters is far from certain.

5. Role of particle flux in flow evolution

While the conserved angular momentum density is a natural
quantity of theoretical interest and is what is probed in
perturbative momentum transport experiments [4], the flow
profile is of great practical interest, because its magnitude and
radial profile influence the stability of resistive wall modes
(RWMs), turbulence-driven transport and the L→H power
threshold. Similarly, we are interested in discriminating
momentum transported by the parallel Reynolds stress and
that originating from particle fluxes. This decomposition is
particularly illustrative since it provides insight into the role of
non-adiabatic electrons in determining the flow profile. The
effects of non-adiabatic electrons on the momentum flux have
not been addressed in prior published work. Recall that the
radial flux of parallel flow is given by the Reynolds stress,
�REY ≡ 〈̃v∗

r ũ‖〉 which satisfies

n0R0�REY
∼= �ang − 〈vφ〉R0
ptl. (25)

It is generally safer to calculate the particle radial flux from drift
wave turbulence using the non-adiabatic electron response


ptl =
〈∑

k

Re(̃v∗
r ñe)

〉
=
〈∑

k

Re(̃v∗
r ñ

NA)

〉
. (26)

Before delving into the details of the calculation, some
general remarks are in order. For electron drift waves
(including trapped electron modes and collisional drift waves,
but not ETG modes), to be linearly unstable, net particle flux,
including diffusion and particle pinch, should be outward.
Since the last term in equation (25) has a multiplier 〈vφ〉, this
outward flux of particles will manifest itself as an inward pinch
of toroidal flow velocity [39]. This pinch will generally add to
the TEP pinch and thermoelectric pinch of flow which has been
calculated in the previous papers and section 2 of this work. As

shown in the appendix, |VTH| ∼ O
(

ωdiγ

Re(ω)2

)
|VTEP| � |VTEP|

for electron drift waves with Re(ω) ∝ ω∗e and ωdi, γ < Re(ω).
Therefore, the total convective pinch of parallel velocity,
mostly consisting of the TEP pinch and the particle flux, from
electron drift wave turbulence will almost certainly be inward.
We gain useful insight from the previous works on particle
flux. For ITG, the evaluation of the thermoelectric pinch
is complicated by the strong sensitivity of this term to the
linear dispersion relation. Thus, we will leave a quantitative
evaluation of this term for ITG modes to a future analysis.

There exist at least three relevant asymptotic regimes
classifying electron drift waves. In the order of decreasing
collisionality, these are

(i) Collisional drift wave: thermal electrons are in the so-
called semi-collisional regime which satisfies νe >

6
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k‖vThe > ω ∼ ω∗e, but k2
‖v

2
Te

> νeiω∗e, so that
they (diffuse and) thermalize along the magnetic field
line faster than one wave period. Magnetic trapping of
electrons plays no role due to the long time scale associated
with it.

(ii) Dissipative trapped electron (DTEM) mode: ν∗e ≡
(νe/ε)/ωbe < 1, but νeff = νe/ε > ω, ω∗e > ωde.
Therefore trapped electrons suffer collisions. Their
non-adiabatic response decreases with ω∗/(νe/ε), and
associated particle flux is small.

(iii) Collisionless trapped electron mode (CTEM): ν∗e < 1,
and ω, ω∗e � ωde > νe/ε, so that collisional effects are
negligible, but trapped electron procession can resonate
with electron drift waves to destablize it.

For DTEM, the particle flux is approximately given by


ptl = −
〈∑

k

ε1/2 |̃vr |2
1 + 3

2ηe − Re(ω)/ω∗e

(νe/ε)

〉
∂n0

∂r
. (27)

Since it is expected that the saturated fluctuation spectrum
peaks at a relatively low (k⊥ρi)

2, the electron temperature
gradient driven particle flux will dominate the residual
density gradient driven particle flux (due to finite (k⊥ρi)

2).
This outward particle flux will be seen as an inward
electron temperature-gradient driven convective flux of parallel
velocity. For CTEM, the trapped electron resonance between
precession drift wave is a dominate excitation mechanism. For
this,

δnNA

n0
= i2

√
πε

(
ω

ωdeG

)3/2

e−ω/ωdeG

×
[

1 − ω∗e

ω

{
1 + ηe

((
ω

ωdeG

)
− 3

2

)}] |e|φ̃
Te

, (28)

(see reference [40]). Once again, ∇Te-driven particle flux
dominates a residual ∇n-driven particle flux due to FLR-
induced down-shift of DW frequency. These ∇Te-driven
inward pinch of parallel velocity expected for both CTEM
and DTEM is an intriguing result since it must be ions which
carry the momentum according to the recoil (last) term of
equation (25). However, the flux really depends on the
trapped electron related quantities due to the quasi-neutrality
constraint!

For a plasma in which ITG is the dominant microturbu-
lence but modified by non-adiabatic electrons, the direction
of particle flux depends on the collisionality and ηe. It is
well known that the net particle flux can be inward if elec-
tron collisionality ν∗e is either very low or very high, and
ηe is high enough. For the semi-collisional passing-electron-
modified ITG mode, better known as the ion-mixing mode [29],
the electrons are in the collisionality regime which corre-
sponds to the collisional electron drift waves, i.e. ν∗e > 1,
νe > k‖vThe > ω, ω∗e, but k2

‖v
2
The > ωνei. While this regime is

no longer relevant to large present-day tokamaks’ core turbu-
lence, it is still applicable to some tokamak edge turbulence,
characterized by high collisionality. For instance ν∗ ∼ 10 in
some C-Mod edge plasmas [41]. This mode is potentially of
high theoretical interest since intrinsic rotation (in particular,
those in C-Mod [6]) seems to initiate at the very edge and prop-
agate inwards. Therefore, any viable theory for intrinsic ro-
tation should include not only a rotation build-up mechanism

at the edge (such as the residual stress [15, 30]), but also an
inward pinch mechanism, in particular, at the edge where rota-
tion develops. Indeed these two mechanisms can be mutually
reinforcing, or otherwise it is very difficult to explain core in-
trinsic rotation. With this in mind, a quantitative assessment is
necessary for a possibility that the ion-mixing mode driven in-
ward particle pinch can manifest itself as an outward flow pinch
and reduce or even reverse the inward TEP inward pinch of
flow. Extending a pioneering work by Coppi and Spight [29],
Lee and Diamond [42] have obtained a more precise expres-
sion for electron response from the Braginskii equations. The
semi-collisional passing electron density perturbation is

ñNA

n0
= −i

ω∗eνe

k2
‖v

2
Te

(
0.51

χ̂e

)

×
[
χ̂e + (1 + αT)2 − 3

2
(1 + αT)ηe

] |e|φ̃
Te

, (29)

where χ̂e = 1.61, αT = 0.71. Consequently, the particle flux
is given by



ion mixing
ptl = −1.02

[
χ̂e + (1 + αT)2

]
χ̂e

(
1 − ηe

ηcrit

)

×
〈∑

k

νe |̃vr |2
k2
‖v

2
TE

〉
∂n0

∂r
. (30)

Therefore, an inward particle flux is expected for ηe > ηcrit
e =

1.77.
For less collisional plasmas with ν∗e < 1, magnetically

trapped electrons play an important role in determining
radial particle flux from ITG mode. For dissipative trapped
electrons with νe/ε > ω, ω∗e, equation (29) still applies.
It yields an outward flux since Re(ω/ω∗e) < 0 for ITG
modes. For collisionless trapped electrons (with ω, ω∗e >

ωde > νe/ε), however, the precession-drift wave resonance
is no longer possible since ITG modes typically propagate
in the ion diamagnetic direction. However, there exists
non-resonant reactive contribution to non-adiabatic electron
response. Since it depends sensitively on the linear dispersion
relation, we do not present it here. It is well known that
for the collisionless trapped electrons, net particle flux can
be inward [43–45] for high enough ηe values. Particle TEP
inward pinch should contribute in this regime where the
second adiabatic invariant exists [46–48]. While particle TEP
pinch is in general comparable to momentum TEP pinch in
magnitude, they are not identical and have different scalings
with respect to magnetic shear. Therefore, with CTEM-
dominated turbulence, we expect a partial cancellation between
momentum TEP pinch and particle TEP pinch.

We speculate that an ensuing weak flow pinch in
collisionless core plasma may not be a serious concern
regarding confinement improvement. We expect that by
having sufficient residual stress and flow pinch in the outer
plasmas extending to the last closed flux surface, significant
confinement improvement can be achieved relying on the flow
shear in that region.

6. Summary and discussion

In this paper, we have reported on recent progress on the
theory of turbulent momentum transport and the origins of
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spontaneous rotation in tokamaks. The principal results of
this paper are:

1. elucidation of the decomposition of the total momentum
flux into diffusive (∼ χφ), pinch (∼ V ) and residual stress
components. These originate from the Reynolds stress
(for χφ , a portion of V and residual stress) and convective
(for a portion of V ) fluxes. The physics of each component
is discussed.

2. the observation that generation of intrinsic rotation
requires either
(a) a non-zero value of the residual stress at the plasma

boundary. In this case coupling of SOL flows to core
rotation is not necessary.

(b) or, a non-zero value of the product V 〈vφ〉 at the
boundary, along with V < 0 (an inward velocity
pinch). In this case, 〈vφ(a)〉 is very likely determined
by SOL flows.

3. calculation of the residual stress via a mesoscale,
modulational approach which captures both shearing and
wave momentum transport effects. The intrinsic wave
radiation stress, which is also the residual stress, is shown
to be proportional to 〈VE〉′ and to ∂〈P‖〉/∂r .

4. the result of 3 is used to calculate the external
torque required to maintain the edge velocity gradient
∂〈vφ(a)〉/∂r at a fixed value. This is essentially
equivalent to the calculation of the torque required
to cancel the residual stress-driven intrinsic rotation
(i.e. ∂〈vφ(a)〉/∂r → 0 for exact cancellation). This
cancellation torque is inversely proportional to a dressed
χφ , which includes the feedback via the 〈vφ〉′ piece of
〈VE〉′. The modification of χφ can be large enough to
affect interpretation of experimentally determined V/χφ

ratios.
5. demonstration that inclusion of non-adiabatic electron

effects generates a ‘recoil contribution’ to the turbulent
velocity pinch via the coupling between flow and
particle transport which is inherent to the transport of
(conserved) angular momentum. We calculate this effect
for collisional, DTEM and CTEM drift waves, and ITG
turbulence. In most cases, an inward flux of toroidal
velocity results.

6. we show that the Rice scaling of intrinsic rotation velocity
can be recovered by a simple model which assumes only
that:
(a) intrinsic rotation is linked to the L→H transition
(b) the edge turbulence follows Bohm scaling (i.e. radial

correlation length �r0 ∼ (a)1(ρ∗)0)
(c) the pedestal width scales as �ped/a ∼ β

1/2
p .

Note most of the results listed above are concerned with the
generation or acceleration of intrinsic rotation. Optimization
of total angular momentum content and rotation profile
control so as to suppress RWMs requires actual profile
calculations which, in some sense ‘match’ the edge or pedestal
layer (controlled primarily by residual stress) with the core
(controlled primarily by diffusion and the convective pinch).
These calculations are beyond the scope of this paper and will
be addressed in a future publication.

Ongoing and future work will focus on studies of
electron heat transport driven regimes [49], electromagnetic

coupling and saturation [50], alternative symmetry breaking
mechanisms (especially polarization stresses [51] and GAM
shearing), coupling to poloidal rotation effects and SOL–core
interaction. Understanding the edge pinch of momentum and
its interaction with the edge rotation velocity driven by SOL
flows is a particularly important near-term goal. Finally we
also plan to apply the theory to the interesting TCV internal
momentum transport bifurcations [10].

The theoretical and computational investigations summa-
rized in this paper suggest several challenges which necessitate
further experimental work in order to formulate an effective re-
sponse. These include, but are not limited to:

1. Residual stress physics;

(a) exploring the relationship between the Rice scaling
and the cancellation torque’s dependence on energy
content W and plasma current Ip.

(b) identifying 〈vφ〉 profile corrugations induced by zonal
flows and characterization of the degree of 〈vφ〉 profile
‘choppiness’.

(c) assessment of residual stress effects in the core,
primarily in high ∇P regimes, with and without ITBs.

2. Boundary effects and SOL flow–core interaction;

(a) studying the evolution of intrinsic rotation during
slow transitions.

(b) exploring the relation between intrinsic rotation
velocity and local edge quantities which control the
residual stress.

(c) comparison of single null and double null rotation in
L and H mode.

(d) comparisons of rotation on low and high neutral
opacity regimes.

(e) performing experiments which explore the viscous
stress of SOL flows on core plasma rotation.

(f) studies of poloidal rotation with the aim of
determining the degree of departure from neoclassical
values.

3. Core transport physics relevant to rotation;

(a) comparisons between momentum and density pinch
velocity.

(b) studies of intrinsic Prandtl number in stiff profile
regimes.

(c) studies of intrinsic rotation in electron-dominated
plasmas—a topic which is highly ITER relevant!

(d) studies of the comparative stiffness of ion, electron
and toroidal momentum profiles.

4. Basic studies;

(a) studies of intrinsic azimuthal rotation [52] in linear
basic experiments, where detailed measurements of
fluctuation induced Reynolds stresses, etc. are readily
available.

Clearly, there is no lack of interesting work to be done on the
subject of intrinsic rotation!
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Appendix. Estimation of thermoelectric pinch for
TEM modes

In this appendix we provide an explicit quasi-linear estimation
for the magnitude of the thermoelectric pinch for TEMs.
In order to evaluate the thermoelectric pinch given by
equation (9a) it will be necessary to compute the difference
between V

NA,φ

TH and V
NA,i

TH . This can be facilitated by rewriting
this difference in the form

V
NA,φ

TH − V
NA,i

TH

=
〈

Re
∑

k

 ωdi

(ω − 4ωdi)
− ωdi(

ω − 14

3
ωdi

)
 ṽ∗

r ñ
NA

〉

≈ CTEM
2 
ptl + CTEM

1 
Im, (A1)

where 
ptl ≡ 〈Re
∑

k ñNAṽ∗
r 〉, 
Im ≡ 〈Im∑k ñNAṽ∗

r 〉,

CTEM
1 ≡ |ωdi|2

{
1

(Re(ω) + 4|ωdi|)2
− 1

(Re(ω) + 14
3 |ωdi|)2

}
,

CTEM
2 ≡ |ωdi|2

{
1

Re(ω) + 14
3 |ωdi|

− 1

(Re(ω) + 4|ωdi|

}
.

Here, we have also assumed that there is a dominant k⊥
which contributes to this expression, as well as the local
approximation.

Utilizing equation (A1), equation (9a) can be rewritten as

VTH = 6
(
C

QL
φ − C

QL
i

)( 1

Ti

∂Ti

∂r
+

4

3R

(
1 +

Ti

Te

))
−8

(
CTEM

2 
ptl/n0 +
Im (ω)

|ωdi| CTEM
1 
Im/n0

)
. (A2)

The coefficients CTEM
1 and CTEM

2 have been evaluated
numerically via the use of a simple linear model for TEMs
based on equations (7) and (8). This system yields a dispersion
relation which is quadratic in complex ω. We have only taken
a root for which Re(ω) > 0 for TEM. Their magnitudes
are bounded by |CTEM

2 | < 0.036 and |CTEM
1 | < 0.016 for

R/Ln > 3 and R/LTi < 3 (i.e. ITG stable case). From this
estimate, it is clear that the second term in equation (A2) is
negligible in comparison with the momentum transported by
particle fluxes. Figures 1–4 contain plots showing in more
detail the behaviour of CTEM

2 and CTEM
1 as the density and ion

temperature gradients are varied, such that the magnitude of
this term for a variety of parameter regimes is made clear.

2 4 6 8 10
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0.005

0.010

0.015

C1
TEM

Figure 1. Plot of CTEM
1 as a function of R/Ln. The dashed line

corresponds to R/LTi = 0, the dash–dotted line to R/LTi = 2 and
the solid line to R/LTi = 3.
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0.030

0.035
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Figure 2. Plot of CTEM
2 as a function of R/Ln. The solid line

corresponds to R/LTi = 0, the dash–dotted line to R/LTi = 2 and
the dashed line to R/LTi = 3.
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0.008

0.010

0.012

0.014
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Figure 3. Plot of CTEM
1 as a function of R/LTi . The solid line

corresponds to R/Ln = 9, the dash–dotted line to R/Ln = 6 and the
dashed line to R/Ln = 3.

Similarly, the first term in equation (A2) can be estimated
via rewriting the difference of the coefficients as

Cφ − Ci =
(

Im(ω)

|ωdi|
)

CTEM
1 � γ

|ωdi| (0.016), (A3)

so that the magnitude of VTH can be estimated as

VTH � 6 × 0.016 × 2 × 8

3R
� 3

R
= VTEP. (A4)
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Figure 4. Plot of CTEM
2 as a function of R/LTi . The dashed line

corresponds to R/Ln = 9, the dash–dotted line to R/Ln = 6 and the
solid line to R/Ln = 3.
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Figure 5. Time evolution of momentum flux (blue) and the
spectrally averaged parallel wave number (red).
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Figure 6. Time evolution of E × B shear rate (blue) and the
spectrally averaged parallel wave number (red).

Here we have used the fact that for TEM (i.e., stable
ITG), |(1/Ti)(∂Ti/∂r)| � 8

3R
. Hence, the thermoelectric

contribution to the flow pinch can be seen to be negligible
in comparison with the TEP portion for TEMs.
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