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Abstract. The article reports on recent developments in the theory of secondary instability in drift–ion

temperature gradient turbulence. Specifically, the article explores secondary instability as a mechanism

for zonal flow generation, transport barrier dynamics and avalanche formation. These in turn are

related to the space–time statistics of the drift wave induced flux, the scaling of transport with

collisionality and β, and the spatio-temporal evolution of transport barriers.

1. Introduction

Recently, the role of secondary instability in
drift wave turbulence has received considerable
attention. This attention has been focused on the
role of zonal flows in regulating transport and
fluctuations, and on streamers, or radially extended
convective cells, as a possible concrete realization of
the avalanche concept from self-organized criticality
theory in the context of continuum models of
plasma dynamics. In this article, several recent
results in the theory of secondary instabilities
are presented and discussed. In Section 2, the
focus is on the theory of zonal flows. First, a
physical picture of the mechanism of zonal flow
generation is presented. This picture complements
earlier theoretical calculations. The solutions of
the coupled ‘predator–prey’ equations for the zonal
flow and drift wave spectra are then discussed. In
particular, the possibility of bifurcation to a conden-
sate state is demonstrated. The basic theory is also
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extended to include the effects of zonal flows on the
transport cross-phase and to treat the simultane-
ous evolution of zonal and mean flows. In Section 3,
the theory of streamers for ion temperature gradi-
ent (ITG) turbulence is presented. The non-linear
growth rate for streamers is calculated using modu-
lational instability theory. The processes of streamer
saturation via subscale Kelvin–Helmholtz instabil-
ity and by radial shearing feedback on the under-
lying turbulence are discussed and compared. The
implications of streamer formation for the probabil-
ity distribution function (pdf) of the transport flux
are also identified. In particular, we show that the
normalized variance of the flux pdf can easily exceed
unity.

2. Zonal flows and transport barriers

Recent computational and theoretical research
has demonstrated that zonal flow shear layers are
an intrinsic and important constituent of the now
classic paradigm of drift–ITG turbulence [1, 2]. By
zonal flows, we refer to low frequency, poloidally sym-
metric potential perturbations with small radial scale
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(a)

(b)

Figure 1. (a) Zonal flows ↔ ‘random’ E × B shear.

(b) Drift wave in sheared flow field.

(i.e. kθ = 0, k‖ = 0, k⊥ρi (finite) [3–5]). In particular,
zonal flows are central to the self-regulation mecha-
nisms of drift wave turbulence intensity and trans-
port [6]. In this section, we discuss recent develop-
ments in the theory of zonal flows. Special attention
is devoted to the basic physics of zonal flow gener-
ation, the mechanisms of zonal flow saturation and
the effect of zonal flows on transport.

2.1. Basic physics of generation

Zonal flows are shear layers or strongly anisotropic
vortices with kθ = 0, k‖ ∼= 0, k⊥ρ finite and (nearly)
zero frequency, Ω ∼= 0. Since kθ = 0, Ṽr = 0, so
that zonal flows are intrinsically incapable of driving
transport, and thus represent a reservoir of benign
fluctuation energy. Zonal flows may be thought of
as a particular limit (kr � kθ = 0) of the more
general convective cell structure. In contrast to the
familiar mean E × B0 shear flows, with direction
determined by profile structure and characterized by
a single scale, zonal flows are of indeterminate direc-
tion and exhibit a spectrum of scales producing a
spatially complex flow profile. Zonal flows are non-
linearly generated by drift waves via modulations
of the radial flux of vorticity (i.e. charge separation
current [7, 8]) and are damped by ion–ion collisions
[9], by non-linear feedback on the underlying drift
waves [10] or (possibly) by Kelvin–Helmholtz type
instabilities which disrupt them [11].

It is illuminating to present a short, ‘back-of-an-
envelope’ type demonstration of zonal flow insta-
bility. Consider a packet of drift waves propagat-
ing in an ensemble of quasi-stationary, random zonal
flow shear layers, as shown in Fig. 1(a). Take the
zonal flows as slowly varying with respect to the
drift waves (i.e. Ω � ωk), i.e. quasi-stationary. The
spatially complex shearing flow will result in an
increase in 〈k2

r〉, the mean square radial wave vec-
tor (i.e. consider a random walk of kr, as described
by eikonal theory). In turn the drift wave frequency
ωe∗/(1 + k2

⊥ρ2
s) must then decrease. Since Ω � ωk,

the drift wave action density N(k) = ε(k)/ωk is con-
served, so that drift wave energy must also decrease.
As the total energy of the system of waves and flows
is also conserved (i.e. εwave + εflow = const), it thus
follows that the zonal flow energy must, in turn,
increase. Hence, the initial perturbation is reinforced,
suggestive of instability. Note that the simplicity
and clarity of this argument support the assertion
that zonal flow generation is a robust and ubiquitous
phenomenon.

A slightly larger envelope is required for a ‘phys-
ical argument’ which is also quantitatively predic-
tive. Consider a drift wave packet propagating in
a sheared flow field, as shown in Fig. 1(b). Take
ωk > |V ′

E | and |k| > |V ′
E/VE |, so that wave action

density is conserved (i.e. N(k) = N0, a constant).
Thus, wave energy density evolves according to:

d

dt
ε(k) = N0

dωk

dt

= N0

(
∂ωk

∂t
+ Vg · ∂ωk

∂x
+

∂ωk

∂k
· dk

dt

)

∼=
(

2krkθρ
2
s

1 + k2
⊥ρ2

s

)
V ′

Eε(k). (1)

Here we have assumed stationary, isotropic turbu-
lence and have used the eikonal equation dkr/dt =
−∂(kθVE)/∂x. Equation (1) just states that the drift
wave packet loses or gains energy via work on the
mean flow via wave induced Reynolds stress. (Indeed,
krkθε(k) ∼ 〈ṼrṼθ〉!) Note as well that the factor
krkθε(k)V ′

E is rather obviously suggestive of the role
of triad interactions in controlling fluctuation–flow
energy exchange. For zonal flows, the shear is random
and broadband, so that V ′

E → ṼE , N → 〈N〉+Ñ and
N0V

′
E → 〈Ñ Ṽ ′

E〉. Hence, Eq. (1) may be rewritten
as:

d

dt
ε(k) = −Vg,rkθ〈Ṽ ′

EÑ〉. (2)
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To complete the argument, the correlator 〈Ṽ ′
EÑ〉

must be calculated. To this end, we use the wave
kinetic equation (WKE)

∂N

∂t
+ (Vg + V ) ·∇N − ∂

∂x
(ω + kθVE) · ∂N

∂k

= γkN −∆ωkN2/N0 (3)

and the methodology of quasi-linear theory to obtain:

kθ〈Ṽ ′
EÑ〉 = DK

∂〈N〉
∂kr

(4a)

DK = k2
θ

∑
q

q2|Ṽ ′
Eq |2R(k, q) (4b)

R(k, q) = γk/((qVg,r)2 + γ2
k). (4c)

The term ∆ωkN
2/N0 represents drift wave non-linear

damping via self-interaction of drift waves (i.e. cas-
cade by local interaction).

Here q is the radial wavenumber of the zonal flow,
and equilibrium balance in the absence of flow has
been used to relate ∆ωk to γk. The wave energy then
evolves according to:

dε(k)
dt

=
2ρ2

sDKkr

(1 + k2
⊥ρ2

s)2
∂〈N〉
∂kr

. (5)

As the total energy of the stationary wave–flow sys-
tem is conserved,

d/dt

(∑
k

ε(k) +
∑

q

|Ṽq|2
)

= 0.

Thus, the zonal flow generation rate is determined
to be:

γq = −2q2c2
s

∑
k

k2
θρ2

s

(1 + k2
⊥ρ2

s)2
R(k, q)kr

∂

∂kr
〈η〉 (6a)

〈η〉 =
(
1 + k2

⊥ρ2
s

)〈ε〉. (6b)

Here 〈η〉 is the mean potential enstrophy density of
the drift wave turbulence.

The result given above in Eq. (6a), obtained by
transparent physical reasoning, is identical to that
derived previously by formal modulational stability
arguments [7]. Note that ∂〈η〉/∂kr < 0 (a condition
which is virtually always satisfied in drift wave turbu-
lence) is required for zonal flow growth. In addition,
the argument above reveals that drift wave ray chaos
provides the key element of irreversibility, which is
crucial to the wave–flow energy transfer dynamics.
Here ray chaos requires overlap of the Ω/q = Vg,r res-
onances in Dk, a condition easily satisfied for finite
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Figure 2. Growth of the zonal flow UE (a) in a back-

ground of fully developed ITG turbulence. Note that χi

decreases as UE grows (b), but persists if the zonal flow

is absent (c).

lifetime drift wave eddys and (nearly) zero frequency
zonal flows (i.e. ∆ωk � Ω). Under these conditions
a positive Lyapunov exponent is present and neigh-
bouring drift wave rays diverge exponentially in time.
Ray chaos in turn ensures that zonal flow shearing
and wave refraction are random, thus validating the
use of the stochastic methodology employed here. In
the case where rays are not chaotic, envelope pertur-
bation formalism, methods from the theory of trap-
ping or parametric instability theory must be used
to calculate zonal flow generation.

Recent gyrokinetic simulations have demon-
strated that modulational instability growth of zonal
flow perturbations in fully developed drift–ITG tur-
bulence can occur. Figure 2 shows that the evolution
of a (seed) zonal flow perturbation initialized in a
bath of quasi-stationary ITG turbulence which had
already saturated by other processes. The seed per-
turbation clearly grows exponentially and its growth
induces a further decrease in the ion thermal diffu-
sivity, as measured by the simulation. Quantitative
comparisons of simulation results with the theory are
in progress. Nevertheless, this evidence for the via-
bility of the modulational instability of zonal flows in
turbulence, as well as their role in regulating trans-
port, is quite compelling.

The basic theory of zonal flow generation outlined
above has been extended to include ITG mode drive
(in both coherent [12] and random phase analyses
[13]), and to treat the narrow band regime [14] and
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the purely weak turbulence regime near the instabil-
ity threshold. More theoretically oriented investiga-
tions have elucidated the nature and dynamics of the
quanta density [15] and the behaviour of wave pack-
ets when trapped or strongly modulated by zonal
flows [16, 17]. Other extensions have treated cou-
pling to electromagnetic fluctuations in the regime of
finite β [18, 19], and the generation of zonal fields [20]
(magnetic perturbations with a structure analogous
to that of zonal flows), a phenomenon with many
similarities to the small scale dynamo. Finally, the
modulational instability theory has been used to cal-
culate the cross bi-spectrum of large scale potential
with small scale perturbations, and to guide exper-
imental investigations of non-linear interactions at
the L → H transition, where zonal flow growth can
be expected [21, 22]. Readers interested in any of the
aforementioned topics are referred to the literature
cited here.

2.2. Mechanisms for zonal flow saturation

In this section, we discuss the critical question
of how the drift wave–zonal flow (DW–ZF) system
saturates. There are basically two possible routes to
saturation, namely via self-regulation by feedback of
the ZFs on the DW spectrum, and via destruction of
the ZFs by Kelvin–Helmholtz type instability. Here
we present recent results on self-regulation. We solve
the coupled equations for the DW and ZF spectra
for arbitrary finite flow collisionality. In particular,
we determine the crossover between 〈N〉 ∼ γd scal-
ing (noted previously [23]) and 〈N〉 independent of
γd (at large γd) scaling, reminiscent of mixing length
estimates. We also discuss the condensate type solu-
tions which appear. The latter may be related to the
formation of jets or streamers.

As we mentioned, ZFs in toroidal devices are
linearly damped only by collisions and may thus
develop quite complicated radial structures that can
hardly be captured by models with only a small num-
ber of modes. This necessitates a theory capable of
describing DWs and ZFs as coupled elements of the
corpus of self-organized turbulence without lumping
their spectra into a few spectral components. Our
predator–prey approach has an advantage over the
low dimensional models since it is based on a spec-
tral description of the turbulence. We have studied
the stationary spectra of coupled DW–ZF turbulence
from the perspective of this model. The focus is on
the scaling of the turbulence and transport levels
with the ZF collisional damping, γd.
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Figure 3. Level of the DW turbulence N (normalized

to twice the mixing length level) for the regular spec-

trum as a function of the collisional damping of the ZFs

normalized to the growth rate γ, Γ = γd/γ. For stronger

self-non-linearity of the DWs (smaller A), the transition

to the mixing length regime is naturally faster.

The analysis entails a natural division of the DW
spectrum into two physically distinct regions. One
region is that of excitation by the ITG instability
and the other is where the DWs are linearly and non-
linearly damped. The flux of the DW quanta from
the former to the latter is determined by the level
of the ZF turbulence, which, as we mentioned, is in
turn powered by the DWs themselves. The transfer
occurs via random shearing of drift waves by ZFs.
Depending on the relation between the timescales of
ZF damping and DW generation γd/γ, two distinct
regimes occur. If this ratio is small, the DWs are
very efficiently sheared by ZFs, so that their ampli-
tude scales linearly with γd. If γd/γ is large, the DWs
saturate via their own non-linearity and the turbu-
lence level will be independent of γd (Fig. 3). Of
course, determining the value of γd/γ at the cross-
over is especially critical to predictions of transport
scaling.

It turns out, however, that multiple saturated
states are possible. Starting from a critical ZF damp-
ing rate γd = γc, two new solutions with consider-
ably higher intensity DW level branch off from the
expected one. Of the three solutions in total, the
intermediate one is (presumably) unstable (Fig. 4).
The solution with smaller turbulence intensity (with
saturation via γd) is characterized by strong shear-
ing of DWs. The solution with higher intensity,
based on its spectral properties (condensate in kr),
consists of radially elongated features in the DW
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Figure 4. The same as in Fig. 3 but for both the regular

and the singular (condensate) solutions. The condensate

spectrum (upper branch) is more easily destroyed by the

ZFs if this spectrum is radially more extended (smaller

value of the cut-off parameter kmin ). The left cusp on the

bifurcation diagram shifts to the right with decreasing

kmin (not shown).

turbulence which can be tentatively identified with
jets or streamers. Cyclic bifurcation transitions
between these two states, reminiscent of the bursting
states observed in simulations [23], are possible.

By studying these solutions we have addressed
the following issues: (i) the saturation mechanism of
the DW turbulence far from the threshold of linear
stability, (ii) determining the transition region from
linear scaling with γd to saturation independent of
γd, (iii) determining the forms of the stationary DW
〈N(kr)〉 and ZF spectra |φq|2, (iv) the stability of
stationary solutions.

The principal results of this study are the
following:

(1) In the limit of weak ZF damping, γd∆ω/γ2 � 1,
the DW turbulence level, and thus transport,
scale with collision rate as 〈N〉 ∝ γd/γ, in agree-
ment with previous results.

(2) In the opposite limit of strong collisional damp-
ing of ZFs, γd∆ω/γ2 � 1, DWs saturate at
a level independent of collisionality, which is
roughly consistent with mixing length predic-
tions. Crossover occurs at γd∆ω/γ2 ≈ 1. This
behaviour is robust, the solution is linearly sta-
ble and no turbulent viscosity need be assumed
for saturation.

(3) Starting from a critical γd, two new solutions
branch off. They manifest a ZF induced inverse
energy transfer within the DW component of

the turbulence. They have a significantly higher
level of turbulence and transport. Their spectral
behaviour as kr → 0 is that of a condensate type
(i.e. a cut-off kr = kmin is required since 〈N〉 ∝
1/k2

r), and the corresponding spatial structures
are radially elongated, i.e. jets or streamers.

Even though the stability analysis predicts multi-
ple states, we were able to identify the lowermost
branch of the solution (which tracks γd and ulti-
mately saturates) with a clearly generic response
of the self-regulated DW–ZF system to the colli-
sional self-damping γd. The change of the turbu-
lence regime occurs when the parameter γd∆ω/γ2

(roughly) becomes larger than unity, manifesting a
situation in which the ZF collisional suppression and
the DW non-linear damping dominate production.
Loosely speaking, this corresponds to a regime of
strong damping of ZFs. The underlying saturated
DW spectrum is regular in k and stable. For a simple
model of linear instability and non-linear damping of
the DWs, we were able to calculate 〈N〉 in a closed
form that has the aforementioned regimes as simple
limiting cases.

Besides this solution regular in kr, there are two
singular solutions with higher 〈N〉 that branch off at
sufficiently strong ZF damping γd. The ‘condensate’
or ‘jet’ spectra (since they are still quite extended,
i.e. low kr) may very well be relevant to the streamer
and transport event formation observed in simu-
lations, because of their radially elongated spatial
structure. It is interesting to note that the condi-
tions under which the jet spectra should form (strong
damping of ZFs) are thus also intrinsically favourable
to the development of streamers. Conversely, when
the ZFs are not strongly suppressed, they should
restrict streamer formation. We summarize our (ten-
tative) results on the condensate and jets below:

(a) Jets require strong suppression of ZFs, i.e. well
developed streamers and ZFs do not coexist.

(b) The γd threshold for jets is very sensitive to
kmin ∼ 1/lstreamer . Note that this suggests that
flux tube and full geometry simulations may
arrive at different results. Formation of sys-
temwide jets would require complete suppres-
sion of ZFs.

(c) The onset of the jet regime should not nec-
essarily be accompanied by a significant shift
of the DW spectrum to smaller kr. Owing to
the increased role of the DW non-linearity, the
spectral broadening is a competing regulatory
process in this regime.
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(d) On the basis of bifurcation diagrams derived
from our results (Fig. 4), bursting may appear
as a hysteresis loop phenomenon, i.e. transitions
between the ZF dominated (i.e. regular) and
condensate solutions can occur.

Note that in addition to determining scalings and
spectra as a function of γd, this investigation has
revealed the existence of a possible condensate spec-
trum suggestive of streamer or jet formation. More-
over, our results indicate the possibility of cyclic
bifurcations between states dominated by ZFs (with
small DW eddys) and those dominated by stream-
ers. Phenomena similar to the proposed cyclic bifur-
cations between these two states have recently been
observed in simulations.

2.3. Zonal flow effects on transport

Virtually all of the existing work on zonal flows
has focused on the issues of zonal flow generation and
damping, as well as their impact on fluctuation lev-
els. However, zonal flows clearly will have a related,
but technically distinct, effect on transport. Here we
consider two questions, namely that of the impact of
zonal flows on the transport cross-phase, and that of
how zonal flow effects might be included in a simple
model of transport barrier dynamics.

It is well known that mean electric field shear
alters the correlation time which is used in construct-
ing the turbulent transport coefficient. This alter-
ation occurs via enhanced Doppler dispersion and
enhanced decorrelation [24]. For the case of zonal
flows, however, the methodology of Ref. [24] is not
applicable, since the zonal flow field is stochastic and
spatially complex. Thus, one must treat R(ω, k), the
time history of a particle’s response to a transport
driving perturbation, by averaging over an ensemble
of shears, as well as fluctuation driven radial excur-
sions. Specifically, instead of

R(ω, k) =

∞∫
0

dτ 〈exp [i(ω̄ − kθ ṽ
′
Eδx)τ ]〉δx (7a)

one must consider

R(ω, k) =

∞∫
0

dτ〈exp[i(ω̄ − kθ ṽ
′
Eδx)τ ]〉δx,ṽ′E . (7b)

Here v′E is the mean shear, ω̄ is the locally Doppler
shifted flow, ṽ′E is the zonal shear and δx is the par-
ticle excursion. Treating the product ṽ′Eδx as a ran-
dom variable and using the standard methodology of

cumulant expansions then gives

R(ω, k) =

∞∫
0

exp[iω̄τ − k2
θτ2〈(ṽ′Eδx)2〉]dτ. (8)

Assuming ṽ′E and δx to be statistically independent
(NB: This is a step which should be investigated
further!) gives

〈(ṽ′Eδx)2〉τ2 ∼= 〈(ṽ′E)2〉〈δx2〉τ2

= 〈(ṽ′E)2〉Dτ3. (9)

Thus

R(ω, k) =

∞∫
0

exp[iω̄τ − k2
θD〈(ṽ′E)2〉τ3] (10a)

so that the effective decorrelation rate and resonance
broadening is

1/τceff =
(
k2

θ〈(ṽ′E)2〉D
)1/3

(10b)

〈ṽ′2E 〉 =
∑

q

q2
x|ṽE,q|2. (10c)

This effective decorrelation rate for radial transport
in random straining fields is easily testable by gyro-
kinetic simulation. Note that, not surprisingly, the
result corresponds to that of Ref. [23], with (〈vE〉′)2
replaced by 〈(ṽ′E)2〉. It should be said, however,
that other than barrier regimes, where turbulence
and thus zonal flow drive are presumably quenched,
〈(ṽ′E)2〉 > (〈vE〉′)2, so that random shear decorre-
lation (due to zonal flows) is likely to be dynami-
cally more significant than mean shear decorrelation.
Hence, transport evolution models incorporating
cross-phase evolution effects should be extended to
include the zonal flow induced cross-phase as well.

Another related issue is that of how zonal flows
influence the evolution of profiles in general and
transport barrier formation in particular. In the past
1-D profile dynamics has been calculated using sim-
ple K− ε type models [25] which evolve the local (at
a given r) fluctuation intensity, mean flows and pro-
files, using transport and momentum balance equa-
tions, the radial force balance equation for the mean
E ×B velocity 〈vE〉 and a model fluctuation inten-
sity evolution equation. To incorporate the effects of
zonal flows, which are clearly a crucial player in the
physics of the underlying (L mode) transport, several
extensions of the theory are required. Specifically,

(1) The fluctuation intensity spectrum 〈N(kr)〉
must be evolved using the quasi-linear WKE.

1072 Nuclear Fusion, Vol. 41, No. 8 (2001)
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(2) The zonal flow intensity spectrum must be
evolved.

(3) The mean profile and electric field shear should
be evolved, including zonal flow effects on the
cross-phase.

Thus, a slightly less simplified version of the sim-
ple model of Ref. [25] (for density evolution only, for
simplicity) would be:

∂〈N〉
∂t

− kθ〈vE〉′ ∂〈N〉
∂kr

− ∂

∂kr
Dk

∂〈N〉
∂kr

=

γk(n′)〈N〉 −∆ωk〈N〉2/N0 (11a)

(
∂

∂t
+ γd

)
|φq|2 =

−q2c2
s

∑
k

k2
θρ2

θ

(1 + k2
⊥ρ2

s)
∂〈N〉
∂kr

R(k, q)|φq |2

+ noise (11b)

∂n

∂t
= S(r) +

∂

∂r
(DNeo + D[〈N〉])∂n

∂r
(11c)

〈vE〉′ = − 1
eB0

(
1
n

dPi

dr

)
. (11d)

Here Dk is given earlier, γ(n′) denotes the need to
incorporate mean gradient evolution in the growth
rate, D[〈N〉] is the transport coefficient to be
computed using 〈N(kr)〉 and R(ω, k) as given by
Eq. (10a), |φq |2 is the radial spectrum evolution and
Eq. (11d) is the radial spectrum force balance equa-
tion. Additional, similar equations can be added for
〈Ti〉, 〈vφ〉 and 〈vθ〉. Note that detailed calculations
indicate that 〈vE〉′ effects do not significantly modify
Dk, the zonal flow induced k space diffusivity.

3. Towards a dynamical theory
of avalanches

3.1. Introduction

Traditionally, the problem of predicting the tur-
bulent transport in magnetically confined plasmas
has been approached from the perspective of mean
field theory, namely by proceeding from the assump-
tion that the transport dynamics is well described by
average fluxes and local transport coefficients, such
as effective diffusivities. This mean field/local trans-
port perspective is the underpinning of the often
used ‘mixing length rule’, D = γL/k2

r , which tacitly

presumes that a single time scale (γ−1
L ) and a sin-

gle space scale (k−1
r ) are sufficient to characterize

the turbulent transport process. Indeed, such mixing
length ‘guesstimates’ are crucial to all of the ‘pre-
dictive transport models’ (such as the IFS–PPPL
model and various imitations thereof) currently used
in the magnetic fusion energy community. However,
the arrival of ideas originating from self-organized
criticality (SOC) theory [26, 27], which proposes that
a scale invariant spectrum of ‘transport events’ or
‘avalanches’ is at work in the dynamics of transport,
has stimulated a series of experimental and compu-
tational investigations which have cast considerable
doubt upon the traditional mean field picture. In
particular, experimental studies have yielded:

(a) The direct observation and visualization of
avalanche type structures on the DIII-D
tokamak [28].

(b) The observation that the pdf of the transport
flux is quasi-Gaussian on the scale of the tur-
bulence correlation length but strongly non-
Gaussian on larger scales, which is indicative of
the formation of structures akin to avalanches
[29].

(c) The observation that the pdf of the transport
flux exhibits finite size scaling, i.e. P (Γ) =
(1/L)P (Γ/L), where Γ is flux and L is a scal-
ing parameter related to the turbulence inten-
sity [30]. This scaling is observed over a broad
range of transport event (i.e. avalanche) sizes.

(d) A wealth of indirect evidence for avalanche and
SOC type phenomena, such as the observation
of multifractality in turbulence [31] and mea-
surements of 1/f type spectra of the turbulent
flux [32].

Also, both continuum and particle simulations of
familiar turbulence models (ITG, resistive balloon-
ing, etc.) have noted that:

(1) Extended, mesoscale transport events or
avalanches are observable and prominent near
marginality [33–35].

(2) Anisotropic (radially extended but poloidally
narrow) eddys, called streamers, are observ-
able and are clearly related to transport events
or bursts. The observed streamers are non-
linear structures, involving many n numbers and
evolving on timescales distinct from that of the
linear growth rate [36, 37].

(3) Contribution to the total flux from large events
diverges, so that scale independent transport
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(i.e. ‘Bohm’) is manifested in models which
naively appear to be linked to small scales
(‘gyro-Bohm’) [35].

It should be noted that great care must be taken
in designing computational experiments to study
avalanches. In particular, experience indicates that
global simulations are more accurate than ‘flux
tube codes’, which impose unphysical constraints
on mesoscale structures [2, 38]. Similarly, a fixed
flux boundary condition, rather than the traditional,
convenient but unphysical assumption of a frozen
gradient, reveals considerably richer avalanche
dynamics [33–35]. All told, there is clearly sufficient,
compelling evidence to warrant a detailed study of
the dynamics of avalanches.

Theoretical paradigms for avalanche phenomena
have been limited to approximate solutions of dis-
crete (cellular automata) models of sandpiles [39]
and to the analysis of highly simplified, reduced 1-D
models [40, 41]. In particular, there is definitely a
gap between these rather idealized systems and even
comparatively simple continuum models of turbu-
lence in confined plasmas. In this section, we present
a theory of avalanche dynamics for a simple, two
field model of ITG turbulence. We conceive of the
avalanche as a radially extended, poloidally asym-
metric convective cell, called a streamer, and tackle
the calculation of its evolution with the methods
of modulational stability theory. This approach is
thus an extension of the theory of convective cell
formation developed by Sagdeev et al. [42], Okuda
and Dawson [43], and Kodama and Taniuti [44] in
the 1970s. However, we extend the aforementioned
paradigm by considering:

(a) The role of magnetic curvature, the pres-
sure advection non-linearity and proximity to
marginal stability in streamer formation.

(b) The self-regulation of streamer cells by the feed-
back of their poloidally sheared radial flows
upon the underlying ITG instabilities which
support them, and by Kelvin–Helmholtz type
instability, which causes their break-up.

(c) The effect of streamers on the statistics of the
flux. In particular, we demonstrate the pro-
portionality of the variance of the flux to the
streamer intensity level. This simple argument
thus bridges the gap between the statistical the-
ory of self-organized criticality and the contin-
uum dynamics of familiar plasma turbulence
models.

To avoid possible confusion, we emphasize here
that our nomenclature ‘streamer’ denotes a non-
linear structure, not the linear ballooning mode cells
seen in simulations during the linear growth phase.
The relevance of the latter to the time asymptotic
turbulence dynamics is dubious.

3.2. Theory of streamer dynamics

We consider the simplest possible model of curva-
ture driven ITG turbulence. The basic equations are
[45]

(∂t −∇φ× z · ∇)(1−∇2)φ + v∗n∂yφ

+ vB∂yp + ν0∇2∇2φ = 0 (12a)

(∂t −∇φ× z · ∇)p− χ0∇2p = v∗p∂yφ. (12b)

Here the equations are de-dimensionalized by kρ →
k, Ωit → t, eφ/T → φ, p/p0 → p, so that v∗p = ρ/Lp,
v∗n = ρ/Ln and vB = ρ/LB. Also, the highly simpli-
fied diffusive dampings ν0 and χ0 ensure the presence
of small scale dissipation to maintain regularity. For
inviscid scales, linear perturbation theory gives

ω =
ω∗

2(1 + k2
⊥)

(
1±

(
1− 4(1 + k2

⊥)
vBv∗p

v2∗n

)1/2
)

.

(13)

Note that a threshold exists (at v2
∗n

/vBv∗p = 4), that
instability requires

k2
⊥ > 1/4

(
v2
∗n

vBv∗p

)
− 1

and that small scale modes grow faster (until the
small scale dissipation cut-off is encountered). Thus,
it is clearly meaningful to speak of large scale (sec-
ondary) streamer cells populated by the interaction
of small scale primary modes. This is similar to
avalanches in cellular automata models produced by
topplings of adjacent lattice sites.

In order to study cell dynamics, it is convenient
to define the low pass filtered field 〈A〉< by

〈A〉< =
∫

ky<kymin

dky

∫
kx<kxmin

dkxAkeik·x. (14)

Here the bandpass effectively filters out the high k

components, which hereafter are treated as back-
ground turbulence intensity, thus allowing us to focus
on the large scale cell components. Note that the fil-
ter is, in general, anisotropic. The low pass filtered
equations are

∂t〈(φ−∇2φ)〉< + v∗n∂y〈φ〉< + vB∂y〈p〉< =Sφ (15a)
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∂t〈p〉< − v∗p∂y〈φ〉< = Sp (15b)

where

Sφ = −〈∂x[(∂yφ)∇2φ]〉< + 〈∂y[(∂xφ)∇2φ]〉< (15c)

Sp = 〈∂x[(∂yφ)p]〉< − 〈∂y [(∂xφ)p]〉< (15d)

are the sources for the streamer cells, and represent
drive by beat interaction of small scales. Observe
that the self-interactions of the large scales are
neglected. The alert reader may be concerned by
the formal difference between the approaches used
in Section 1 and here. Actually, the approaches are
fundamentally similar, and only appear to be dif-
ferent, since the ITG mode is a reactive instability,
involving two equations and often with negligible real
frequency, while the drift mode is a wave destabi-
lized by inverse dissipation. Thus, somewhat different
turbulent states are modulated in these two cases.
Moreover, the result of the wave kinetic derivation in
Section 2 has been previously obtained, using a
methodology identical to that used here, in Sec-
tion 3. Hence, there is no fundamental disagree-
ment or inconsistency between the approaches of
Sections 2 and 3.

Straightforward calculation then allows us to
write the sources as

Sφ = ∂x∂y(〈(∂xφ)2〉< − 〈(∂yφ)2〉<)

+ (∂2
y − ∂2

x)〈(∂xφ)(∂yφ)〉< (16a)

Sp = ∂x〈(∂yφ)p〉< − ∂y〈(∂xφ)p〉<. (16b)

Here ∂x and ∂y acting on quantities within brackets
probe only the unfiltered (large) scales. Sφ and Sp

represent the effects of turbulent Reynolds stresses
and ion thermal flux, respectively. Observe that Sφ is
clearly quite sensitive to anisotropy of the spectrum
of small scales. Sp may be further simplified by using
the (broadened) quasi-linear response of p to φ to
write

Sp = ∂y〈(∂xφ)Rk(∂yφ)〉<v∗p

− ∂x〈(∂yφ)Rk(∂yφ)〉<v∗p (17a)

where

Rk = ∆ωk/(ω2
k + ∆ω2

k). (17b)

It is interesting to examine the structure of Sφ and
Sp in different limits. For simplicity, we will consider
isotropic turbulence, so that 〈(∂yφ)2〉< = 〈(∂xφ)2〉<.
In the ‘streamer limit’ ∂y � ∂x, so that potential and

pressure perturbations of the streamer remain cou-
pled. Note that both Sφ and Sp are ultimately pro-
portional to the turbulence Reynolds stress. In the
opposite, ‘zonal flow limit’ where ∂x � ∂y, 〈φ〉< and
〈p〉< decouple, so that 〈φ〉< is driven by momentum
transport alone (Reynolds stress again!) while 〈p〉<
is driven by thermal transport alone. (NB: Strictly
speaking, the 〈φ〉< equation must be modified in the
pure zonal flow limit to reflect the fact that the elec-
trons are not adiabatic for ky = k‖ = 0. This change
amounts to taking 1 + k2

xρ2 → k2
xρ2 for zonal flows.)

Finally, observe that isotropic cells are not pumped
unless the small scale turbulence is anisotropic.

Hereafter, we will focus on the extreme streamer
cell limit, where ∂y〈φ〉< � ∂x〈φ〉< → 0. In order
to examine the stability of large scales, the modu-
lational response of the Reynolds stress and ther-
mal flux to streamer potential perturbations must
be extracted. Thus, we write

〈(∂xφ)(∂yφ)〉< =
∑ ∼=

(
δ
∑

δ〈φ〉<

)
〈φ〉< (18a)

〈(∂xφ)Rk(∂yφ)〉< =
∑′ ∼=

(
δ
∑′

δ〈φ〉<

)
〈φ〉<. (18b)

For notational convenience, from now on we
write 〈φ〉< as φ̄. Fourier analysing φ̄ as φ̄ =∑

q,Ω φ̄q,Ωei(qy−Ωt), we then obtain the non-linear
dispersion relation and eigenfrequency for streamer
cells. These are:

Ω2(1 + q2)− Ω(qv∗n) + vBv∗pq2

(
1− δ

∑′

δφ̄

)

+ iq2 δ
∑

δφ̄
Ω = 0 (19a)

Ω =
qv∗n

2
− iq2

2
δ
∑
δφ̄

± 1
2

(
δω2

+
(
− 2i(qv∗n)q

2 δ
∑
δφ̄

+ 4q2v∗pvB
δ
∑′

δφ̄

))1/2

. (19b)

Eq. (19b), δω2 = q2(v2
∗ − 4v∗pvB) is a measure of

the deviation from marginality. We have dropped the
term (δ

∑
/δφ̄)2, which is 0(eφ/T )4, and have taken

1 + q2 ∼= 1. We use adiabatic theory to determine
δ
∑

/δφ̄ and δ
∑′

/δφ̄. For ITG turbulence, which is
quite similar in its dynamics to Rayleigh–Benard
convection, the adiabatic invariant is the Wigner
function [15, 46]:

N(k) = (1 + k2)2
∑

q

φk+qφq−ke
2iq·x. (20)

Nuclear Fusion, Vol. 41, No. 8 (2001) 1075



P.H. Diamond et al.

Obviously here kx � kx ,min and ky � ky,min .
Note that N is essentially the potential enstrophy of
the underlying ITG mode vortices, which is a mea-
sure of the effective ‘roton’ density of the turbulence.
N is conserved, up to dissipation and buoyancy drive.
Thus, we can write∑

=
∑

k>kmin

kxky

(1 + k2)2
N(k) (21a)

∑′
=

∑
k>kmin

kxkyRk

(1 + k2)2
N(k) (21b)

so that δ
∑

/δφ̄ and δ
∑′

/δφ̄ are now easily deter-
mined using the linearized WKE. For streamer cells,
the linearized WKE is

∂N̂

∂t
+ vg,y

∂N̂

∂y
+ γkN̂ =

∂

∂y
(kxV̄x)

∂〈N〉
∂ky

. (22a)

(NB: Here V̄x = −∂yφ̄, the E × B velocity of the
streamer cell.) and the response N̂ is thus

N̂q,Ω =
iq2kxφ̄q,Ω

Ω− qvg,y + iγk

∂〈N〉
∂ky

. (22b)

It follows, then, that δ
∑

/δφ̄ is given by

δ
∑
δφ̄

=
∑

k>kmin

q2 k2
x

(1 + k2)2
R(Ω− qvg,y)ky

∂〈N〉
∂ky

(23a)

R(Ω− qvg,y) = γk/(Ω− qvg,y)2 + γ2
k. (23b)

R(Ω− qvq,y) is the broadened resonance function for
interaction between the streamer phase velocity and
the ITG mode group velocity. Observe that, in con-
trast to the case of zero frequency zonal flows, an
unambiguous quasi-linear limit of R clearly exists,
i.e. as γk → 0, R → πδ(Ω − qvg,y). δ

∑′
/δφ̄ follows

similarly.
It is clear that δ

∑
/δφ̄ < 0 and δ

∑′
/δφ̄ < 0

for ∂N/∂ky < 0, which is virtually always the case
in drift wave turbulence. Thus, streamer cells will
be non-linearly excited in the absence of a popu-
lation inversion. Note that drive occurs via both
Reynolds stress and pressure advection coupling, and
that proximity to linear marginality clearly has an
important effect upon streamer evolution. To clarify
this, we consider two limits. For streamers that are
strongly linearly stable,

Ω ∼= (qv∗n ± δω)
2

− iq2

2
δ
∑

δφ̄
.

Thus, the streamer growth rate γq = ImΩ =
−q2δ

∑
/δφ̄ is due to Reynolds stress coupling, and

is quadratic in small scale fluctuation intensity, i.e.
δ
∑

/δφ̄ ∼ 〈N〉 ∼ (eφ/T )2. Finally, using dimen-
sional units, γq ∼ (qρ)4, with qρ < 1. However, for
scales which are linearly marginal (so that δω2 = 0),

Ω =
qv∗n

2
− iq2

2
δ
∑
δφ̄

± 1
2

(
4i(qv∗n)q2 δ

∑
δφ̄

+ 4q2v∗pvB
δ
∑′

δφ̄

)1/2

.

Since qρ < 1, this may be simplified to

Ω ∼= qv∗n

2
− iq2

2
δ
∑
δφ̄

±
(
q2v∗pvB

δ
∑′

δφ̄

)1/2

so that γq ∼ (q2v∗pvB)1/2(eφ/T ). Note that near
marginality, γq scales directly with curvature, is con-
trolled by modulation of pressure advection and
scales with (eφ/T ). Thus, we can conclude that
there is a regime of fast streamer drive (∼eφ/T )
near marginal stability and a regime of slow drive
∼(eφ/T )2 when the large scales are stable. The
crossover between these two limits occurs when
δω2 ∼ max(iqv∗nq2δ

∑
/δφ̄, q2v∗pvBδ

∑′
/δφ̄). Note

that the streamer always has a real frequency∼ qv∗n .
While this simple study employs only local anal-

ysis, it is nevertheless possible to deduce certain
aspects of streamer physics in toroidal geometry from
the results obtained here. Streamers always have a
finite qy, which translates to finite n (kθ = nq(r)/r)
in a torus. Except for extremely low n’s, then,
streamer structure should be compatible with the
ballooning mode representation. Indeed, since the
streamer drive

∑ ∼ |φ(θ)|2 is proportional to the
intensity (envelope) of the underlying ballooning–
ITG modes, streamers can also be expected to extend
along magnetic field lines and exhibit the other
structural features of ballooning modes in a torus.
Recent simulations [38] indicate that streamers
indeed do exhibit such characteristics of ballooning
structure, albeit with many n modes participating.
This vitiates the oft stated assumption that mag-
netic shear, toroidicity, etc., will inhibit convective
cell and streamer formation.

3.3. Self-regulation mechanisms
for streamers

It is important to realize that the turbulent state
with streamer cells is dynamic rather than static. In
particular, while cells are pumped by small scales,
they also produce feedback on the underlying ITG
modes by shearing, as well as via gradient relax-
ation. Here it is important to note that, in contrast to
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Shearing

Generation of High k

ITG Vortex

Streamer Cell

θ

Figure 5. Poloidal shear of radial streamer flows strains

and enhances the decorrelation of ITG vortices.

zonal flows, ‘shearing’ refers to poloidal shearing of
radial streamer flows rather than the usual process of
radial shearing of poloidal flows (Fig. 5). The shear-
ing process is a stochastic one, whereby an ensemble
of streamer cells induces a random walk of the ITG
mode ky, which ultimately couples ITG driven spec-
tral energy to high ky damping. Stochastic method-
ology is applicable if the underlying ITG rays are
chaotic (i.e. have a positive Lyapunov exponent). In
that case, standard quasi-linear theory allows us to
write the WKE for 〈N〉 as:

∂〈N〉
∂t

=
∂

∂ky
Dky

∂〈N〉
∂ky

+ γk〈N〉 −∆ωk
〈N〉2
N0

(24a)

Dky =
∑

q

q4k2
x|φ̄q|2R(Ωq − q, vg,y). (24b)

Here Dky represents the stochastic refraction of ITG
eddys by poloidally sheared streamer flows [7, 8, 47].
Note, however, that in contrast to the case of its
analogue for zonal flow feedback shearing, Ω 6= 0
for streamers. Hence, 〈N〉 evolution can saturate by
plateau formation at k such that vg,y(k) = Ωq/q.
While growth and local spectral interactions can be
expected to perturb the flattened 〈N〉, observation of
such a plateau formation trend in simulations would

be one indicator of the presence and activity of this
important feedback mechanism.

Another possible feedback mechanism which may
limit streamer growth is Kelvin–Helmholtz (K–H)
type instability of the streamer flow [48]. In con-
trast to the case of zonal flows, K–H type modes
for streamers are simple and robust. This is a con-
sequence of the fact that a K–H instability is basi-
cally an interchange of two vortices across the mid-
point of the shear layer. In the case of zonal flows,
this interchange is a radial one, which forces the vor-
tex tubes involved to rotate, so as to align with the
local (sheared) magnetic field. Thus, K–H instabili-
ties will be severely inhibited by magnetic shear, Lan-
dau damping, etc. For streamers, the interchange is
azimuthal (at roughly constant radius) so no vor-
tex tube rotation is required. Also, since plasma
free energy is stored in radial gradients, streamer
K–H modes are driven by flow shear only. Thus, well
known results from hydrodynamics are applicable.
In the case of long, thin streamers, which can be
crudely approximated as tangential discontinuities
for the case of qx∆y < 1 (here qx is the wavenumber
of the K–H mode and ∆y ∼ 1/q is the poloidal width
of the streamer), the K–H growth rate will scale
as γqx ,KH = qxV̄/2, where V̄ is the streamer flow
velocity.

All told, the coupled system of streamers and
ITG vortices is self-regulating and clearly of the
predator–prey form. It can be described by the
equations
∂

∂t
|φ̄q|2 = γq|φ̄q|2 − γKH |φ̄q|2 − γd,q|φ̄q|2 (25a)

∂〈N〉
∂t

=
∂

∂ky
Dky

∂〈N〉
∂ky

+ γk〈N〉 −∆ωk
〈N〉2
N0

(25b)

together with the transport equation for mean pres-
sure. Here γq is the modulation instability pump-
ing rate, γKH is the K–H instability growth rate
(both given above) and γd,q refers to residual linear
Landau and collisional damping, etc. The 〈N〉
equation is the same as Eqs (24).

It is interesting to compare the efficacy of the two
non-linear self-regulation mechanisms, namely K–H
instability (note γKH = γKH (φ̄)) and random shear-
ing. Crudely put, Dky states that random shearing
will quench streamer drive at a rate γsh ∼ (∂yV̄ )2τac ,
where (∂yV̄ )2 is the mean square poloidal shearing
rate of the streamer flow field and τac is the auto-
correlation time of the streamer pattern. Estimating
(∂yV̄ )2τac as α(∂yV̄ ), where α is a factor ≤1, it fol-
lows that γKH /γsh ∼ qx/αqy. Thus, it seems that
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both processes will be significant and that detailed
quantitative studies will be required for further eluci-
dation of their relative strength. At this point, how-
ever, it does seem fair to say that the conventional
wisdom which states that ‘streamers break up via
K–H instabilities’ seems little more than convention.

3.4. Streamers and
the statistics of transport

A quantitative theory of transport must account
for and predict avalanche phenomena. As avalanches
are intrinsically bursty and intermittent, such a the-
ory must necessarily be statistical, i.e. designed to
predict the pdf of the transport flux and not merely
its mean value. While even approximate calculations
of turbulence pdfs remain elusive [49] (though recent
applications of instanton methods to very simple
models such as 1-D Burgers turbulence hold promise
in this regard [50, 51]), the modulational theory of
streamer generation does allow us to estimate the
variance of the turbulent flux. The flux variance is
directly related to the streamer intensity, which can
(in principle) be calculated using Eqs (25). Thus,
some insight into the variance of the heat flux pdf
and its dependencies can be obtained.

The ITG driven heat flux Q is given by

Q = −
[ ∑

k>kmin

Rk

k2
y

(1 + k2)2
(
〈N(k)〉+ N̂(k)

)] ∂〈p〉
∂r

.

(26)

Here the streamer flow induced spectral modulations
N̂ cause fluctuations Q̂ in the heat flux about its
mean value. Noting that N̂(k) is given by Eq. (22b),
the flux perturbation Q̂ = Q− 〈Q〉 is

Q̂ =
∑

k>kmin

Rk

k2
y

(1 + k2)2
∑

q

eiqyq2φ̄qR(Ω− qvg,y)kx

× ∂〈N(k)〉
∂ky

(
∂〈p〉
∂r

)
. (27)

Since it is not especially illuminating to display
the detailed calculation of the normalized flux vari-
ance 〈Q̂2〉/〈Q〉2 here, we proceed to simply write its
estimate, which can easily be shown to be

〈Q̂2〉
〈Q〉2 ≈

∑
q

q4|φ̄q|2
(

α1kx

kyv′g∆ky

)2

res

. (28)

Here v′g = ∂vg,y/∂ky, ∆ky is the turbulence spectral
width and α1 is the power law index for 〈N〉 (i.e.

〈N〉 ∼ (ky)−α1 . Note that since the streamer induced
heat flux varies poloidally, (〈Q̂2〉/〈Q〉2)1/2 is finite
while 〈Q̂〉/〈Q〉 vanishes. Thus, the RMS normalized
heat flux perturbation ∆Q = (〈Q̂2〉/〈Q〉2)1/2 is given
by

∆Q ≈
(∑

q

q4|φ̄q|2
)1/2 ∣∣∣∣ α1kx

kyv′g∆ky

∣∣∣∣
res

. (29)

Note that ∆Q is directly proportional to φ̄, the
streamer fluctuation level. Not surprisingly, then,
strong streamer excitation necessarily implies that
the heat flux pdf has large variance. Indeed, balanc-
ing non-linear pumping growth with K–H break-up
gives v̄q ∼ γq/qx, so

∆Q ∼ (qyγq/qx)(α1kx/kyv′g∆ky). (30)

Several aspects of this estimate of the normalized flux
variance are of interest. First, note that ∆Q ∼ 1/qx,
where qx is the wavenumber of the (streamer flow)
K–H instability. Thus, long wavelength K–H implies
large ∆Q, since the residual cells (i.e. those produced
by K–H break-up of the streamer) will be extended
(i.e. qy & qx). Note also that near marginality,
γq ∼ ωc(eφ/T ) (where ωc is the curvature frequency
and eφ/T is the ITG fluctuation level). Thus, the
combined influence of large γq and small qx (qy & qx)
suggests that the flux variance can indeed be signifi-
cant, i.e. ∆Q ∼ 0.2–0.5 for typical parameters. This
estimate suggests that further, quantitative studies
of flux statistics are most certainly warranted.

4. Conclusion

In this article, recent findings from several related
investigations of secondary instability in drift wave
turbulence have been presented. The principal
results are:

(i) A simple physical derivation of zonal flow
growth is shown to recover previously obtained
theoretical results.

(ii) The coupled predator–prey type equations for
the drift wave spectral intensity and the zonal
flow spectrum have been solved. The solutions
indicate the possibility of bifurcation transi-
tions between states with zonal flows and ‘con-
densate dominated’ states, characterized by
large eddys and increased transport. These
transitions may be related to the bursting phe-
nomena observed in gyrokinetic simulations.
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(iii) Resonance broadening theory has been used
to determine the effect of zonal flow shearing
on the transport cross-phase. In particular,
the Biglari–Diamond–Terry result [24] with
〈v〉′2 → 〈ṽ′2〉 is recovered. Since in general
〈ṽ′2〉 > 〈v〉′2, zonal flows have a stronger effect
on the cross-phase.

(iv) The simple K − ε type model of transport
barrier dynamics derived previously has been
extended to include the evolution of the zonal
flow spectrum, as well as that of the mean flow.

(v) The rate of streamer generation has been cal-
culated for ITG turbulence. Modulations of
the vorticity flux and the thermal flux both
contribute to streamer growth.

(vi) A new mechanism for streamer saturation has
been identified. This mechanism is that of
shearing by radial flows, which acts to increase
kθ, thus strengthening coupling to dissipation.
We show that radial flow shearing is likely to be
a more efficient mechanism than the oft quoted
K–H instability.

(vii) The relation between the incidence of stream-
ers and the appearance of avalanche phenom-
ena is elucidated by the calculation of the nor-
malized flux variance. In particular, we show
that the normalized variance can approach or
exceed unity when streamers are formed.

The implications of these results for various aspects
of the drift wave turbulence problem are discussed.

At this point, it is reasonable to discuss possible
future extensions of this work. In the area of zonal
flows, the rate of zonal flow damping (i.e. ‘anomalous
viscosity’) induced by K–H instability of zonal flows
is a critical issue, as is the interplay between zonal
and mean flows in transport barrier dynamics. In the
area of streamers and avalanches the major challenge
which remains is the non-perturbative calculation of
the transport flux pdf. To this end, the application
of functional integral methods from quantum field
theory is a very promising approach. Finally, under-
standing the interplay of, and interaction between,
zonal flows and streamers remains a challenging and
fascinating problem.
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