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Abstract
A nonlinear gyrokinetic simulation model incorporating equilibrium current has been formulated for studying kinetic
magnetohydrodynamic processes in magnetized plasmas. This complete formulation enables gyrokinetic simulation
of both pressure-gradient-driven and current-driven instabilities as well as their nonlinear interactions in multi-
scale simulations. The gyrokinetic simulation model recovers the ideal magnetohydrodynamic theory in the linear
long wavelength regime including ideal and kinetic ballooning modes, kink modes and shear Alfvén waves. The
implementation of this model in the global gyrokinetic particle code has been verified for the simulation of the
effects of equilibrium current on the reversed shear Alfvén eigenmode in tokamaks.

1. Introduction

Gyrokinetic simulation is useful for studying drift wave
instabilities and kinetic magnetohydrodynamic (MHD) modes,
such as interchange modes, kink modes and shear Alfvén
waves excited by energetic particles, where kinetic effects
are important. With a recent electromagnetic upgrade
[1], the global gyrokinetic toroidal code (GTC) [2] has
been successfully applied to the simulations of various
Alfvén eigenmodes in tokamaks including toroidal Alfvén
eigenmodes (TAEs) [3], reversed shear Alfvén eigenmodes
(RSAEs) [4] and beta-induced Alfvén eigenmodes (BAEs)
[5]. Previous gyrokinetic simulations treat only pressure-
driven instabilities. In this work we further extend the
formulation of the gyrokinetic simulation model in GTC
to include equilibrium current, which affects the existence
condition of RSAE [4, 6] and excites current-driven modes
such as the kink mode [7]. Nonlinear electron effects are also
added in the electron continuity equation [1], which enables
fully nonlinear electromagnetic simulations. In the linear and
long wavelength limit, this gyrokinetic formulation is shown
to reduce to the ideal MHD theory. The implementation of
the equilibrium current is verified in RSAE simulations by
comparing with the analytic theory.

This paper first presents the nonlinear gyrokinetic
formulation with equilibrium current in section 2. Then the
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formulation in the linear long wavelength limit is shown to
reduce to the ideal MHD theory in section 3. The verification
of the implementation of the equilibrium current in RSAE
simulations is shown in section 4. The conclusions are given
in section 5.

2. Nonlinear gyrokinetic formulation with
equilibrium current

In this gyrokinetic formulation used in GTC, the ions are
described by the gyrokinetic equation [8]. Although GTC
can do both δf and full-f simulations, in this work only
δf simulation is considered. With quantities decomposed
into equilibrium and perturbed components, and the parallel
perturbed magnetic field δB‖ ignored for low-β plasmas, the
gyrokinetic equation reads

(∂t + Ẋ · ∇ + v̇‖∂v‖)[f0(X, µ, v‖) + δf (X, µ, v‖, t)] = 0,

(1)

Ẋ = v‖
B0 + 〈δB〉c

B0
+

cb0 × ∇〈φ〉c

B0︸ ︷︷ ︸
〈vE〉c

+
v2

‖
�

∇ × b0︸ ︷︷ ︸
vc

+
µ

m�
b0 × ∇B0︸ ︷︷ ︸

vg

, (2)
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v̇‖ = − 1

m

B0 + B0v‖
�

∇ × b0 + 〈δB〉c

B0
· (µ∇B0 + Z∇〈φ〉c)

− Z

mc
∂t 〈A‖〉c, (3)

where f0 and δf denote the equilibrium and the perturbed
distribution function, respectively; X, v‖, µ, m, Z and �

denote the gyro-centre position, the parallel velocity, the
magnetic moment, the mass, the electric charge and the
cyclotron angular frequency, respectively; B0, δB, φ and
A‖ denote the equilibrium and the perturbed magnetic field,
the electrostatic potential and the parallel vector potential,
respectively; b0 ≡ B0/B0; vE , vc and vg denote the E × B
drift velocity, the curvature drift velocity and the grad-B drift
velocity, respectively; c and t denote the light speed and the
time, respectively;

〈·〉c ≡
∫

dϑc

2π
dx δ(X + ρ − x) (4)

denotes gyro-averaging with ϑc, x and ρ being the gyro-phase
angle, the particle position and the gyro-radius vector. Here
zero equilibrium electric field (φ0 = 0) and time-independent
equilibrium magnetic field (∂tA‖0 = 0) are assumed, so φ and
A‖ are used to denote the perturbed potentials including the
zonal and nonzonal components:

φ = φ00 + δφ, A‖ = A‖00 + δA‖, (5)

where φ00 and A‖00 are zonal components, and δφ and δA‖ are
nonzonal components.

The electromagnetic field is described by the gyrokinetic
Poisson equation [9] and Ampère’s law [1]:

Z2
i ni

Ti
(φ − φ̃) =

∑
α=i,e

Zα δnα, (6)

− c

4π
∇2

⊥A‖ =
∑
α=i,e

δJ‖α, (7)

where for the ion species [10],

δφ̃(x, t) = 1

ni

∫
X→x

dvfi(X, µ, v‖, t)〈δφ〉c(X, t), (8)

δni(x, t) =
∫

X→x

dvδfi(X, µ, v‖, t), (9)

δJ‖i(x, t) =
∫

X→x

dvZiv‖ δfi(X, µ, v‖, t). (10)

Here the integral symbol represents the integral over the gyro-
centre velocity space and the transformation between the gyro-
centre and the particle coordinates:∫

X→x

dv ≡
∫

2πB0

m
dµ dv‖

∫
dϑc

2π
dX δ(X + ρ − x). (11)

For electrons, the particle position and the gyro-centre
position are not distinguished because of their small gyro-radii
(k⊥ρe � 1, where k⊥ = |∇⊥|) in the drift-kinetic limit, so their
density and current are simply just (Ze = −e):

δne =
∫

GC
dvδfe, (12)

δJ‖e = −e

∫
GC

dvv‖ δfe, (13)

where ∫
GC

dv ≡
∫

2πB0

m
dµ dv‖. (14)

To obtain good numerical properties in ion scale simulations,
the electrons are simulated using a fluid-kinetic hybrid model
[1, 11] in GTC. In section 2.1, the electron continuity equation
is extended to include the equilibrium current and nonlinear
effects.

GTC solves the ion gyrokinetic equation and the kinetic
part of the electron hybrid model using the particle-in-cell
method. The perturbed distribution function is carried by the
marker particle weight w. For ions, wi ≡ δfi/fi. For electrons,
we ≡ δhe/fe, where δhe is the nonadiabatic part of the electron
perturbed distribution function. In section 2.2, the weight
evolution equations are extended to include the equilibrium
current.

2.1. Electron continuity equation

Since electron’s gyro-radius is much smaller than ion’s, we
take the drift-kinetic limit of (1) for electrons by removing
the gyro-averaging operator 〈·〉c. Integrating (1) in the drift-
kinetic limit over the guiding centre velocity space

∫
GC dv, we

get an equilibrium equation and a perturbed equation. The
equilibrium continuity equation writes:

B0 · ∇
(

n0u‖0

B0

)
+

c∇ × b0

Z
· ∇

(
P‖0

B0

)

+
cb0 × ∇B0

Z
· ∇

(
P⊥0

B2
0

)
+

c∇ × b0 · ∇B0

ZB2
0

P⊥0 = 0,

(15)

where

n0 =
∫

GC
dvf0, (16)

u‖0 = 1

n0

∫
GC

dvv‖f0, (17)

P‖0 =
∫

GC
dvmv2

‖f0, (18)

P⊥0 =
∫

GC
dvµB0f0. (19)

The neoclassical equilibrium flow u‖0 in (15) is determined
by the neoclassical theory [12]. The perturbed continuity
equation is

0 = ∂t δn + δB · ∇
(

n0u‖0

B0

)
+ B0vE · ∇

(
n0

B0

)

+ B0 · ∇
(

n0 δu‖
B0

)
+

c∇ × b0

Z
· ∇

(
δP‖
B0

)

+
cb0 × ∇B0

Z
· ∇

(
δP⊥
B2

0

)
+

c∇ × b0 · ∇B0

ZB2
0

δP⊥

+
c∇ × b0

B0
· n0∇φ + δB · ∇

(
n0δu‖
B0

)

+ B0vE · ∇
(

δn

B0

)
+

c δn

B2
0

b0 × ∇B0 · ∇φ

+
c δn

B2
0

∇ × B0 · ∇φ, (20)
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0 = ∂t δn + δB · ∇
(

n0u‖0

B0

)
+ B0 · ∇

(
n0 δu‖

B0

)

+ B0vE · ∇
(

n0

B0

)
− n0(δv∗ + vE) · ∇B0

B0

+
c∇ × B0

ZB2
0

· ∇ δP‖ +
c∇ × B0 · ∇B0

ZB3
0

(δP⊥ − δP‖)

+ n0
c∇ × B0

B2
0

· ∇φ + δB · ∇
(

n0δu‖
B0

)

+ B0vE · ∇
(

δn

B0

)
+

c δn

B2
0

b0 × ∇B0 · ∇φ

+
c δn

B2
0

∇ × B0 · ∇φ, (21)

where

δn =
∫

GC
dvδf, (22)

δu‖ = 1

n0

∫
GC

dvv‖ δf, (23)

δP‖ =
∫

GC
dvmv2

‖ δf, (24)

δP⊥ =
∫

GC
dvµB0 δf, (25)

and
δv∗ = c

n0ZB0
b0 × ∇(δP⊥ + δP‖) (26)

is the perturbed diamagnetic drift velocity. Apply (20) and
(21) to the electrons (Ze = −e):

0 = ∂t δne + δB · ∇
(

n0eu‖0e

B0

)
+ B0vE · ∇

(
n0e

B0

)

+ B0 · ∇
(

n0e δu‖e

B0

)
− c∇ × b0

e
· ∇

(
δP‖e

B0

)

− cb0 × ∇B0

e
· ∇

(
δP⊥e

B2
0

)
− c∇ × b0 · ∇B0

eB2
0

δP⊥e

+
c∇ × b0

B0
· n0e∇φ + δB · ∇

(
n0eδu‖e

B0

)

+ B0vE · ∇
(

δne

B0

)
+

c δne

B2
0

b0 × ∇B0 · ∇φ

+
c δne

B2
0

∇ × B0 · ∇φ, (27)

0 = ∂t δne + B0 · ∇
(

n0e δu‖e

B0

)
+ B0vE · ∇

(
n0e

B0

)

− n0e(δv∗e + vE) · ∇B0

B0
+ δB · ∇

(
n0eu‖0e

B0

)

+
c∇ × B0

B2
0

·
[
−∇δP‖e

e
− (δP⊥e − δP‖e)∇B0

eB0
+ n0e∇φ

]

+ δB · ∇
(

n0eδu‖e

B0

)
+ B0vE · ∇

(
δne

B0

)

+
c δne

B2
0

b0 × ∇B0 · ∇φ +
c δne

B2
0

∇ × B0 · ∇φ. (28)

The first four terms in (28) are identical to the electron
continuity equation (10) in [1]. The fifth and the sixth terms
are introduced by the parallel equilibrium flow u‖0e and finite
∇ × B0. The last four terms are nonlinear terms. The parallel

equilibrium flow and current terms are verified in RSAE
simulations shown in section 4. The nonlinear terms will be
verified in future nonlinear Alfvén eigenmode simulations.

2.2. Particle weight evolution equations

We assume that the equilibrium distribution is a shifted
Maxwellian for all particle species:

f0α = n0α

(2πv2
th,α)3/2

exp

[−(v‖ − u‖0α)2 − 2µB0

mα

2v2
th,α

]
α = i, e, (29)

where u‖0α is the parallel equilibrium flow velocity, and
vth,α = √

Tα/mα is the thermal velocity. The weight evolution
equation for ions reads [1]:

dwi

dt
= (1 − wi)

{
−

(
v‖

δB

B0
+ vE

)
· κi +

u‖0iµ

Ti

δB

B0
· ∇B0

− Zi

Ti
(v‖ − u‖0i)

(
b0 · ∇φ +

1

c
∂tA‖

)

− Zi

Ti

[
vg +

(
1 − u‖0i

v‖

)
vc

]
· ∇φ

}
. (30)

The weight evolution equation for electrons reads [1]

dwe

dt
=

(
1 +

δf
(0)
e

f0e
+ we

) {
− vE · κe − ∂t

δf
(0)
e

f0e

− (vg + vc) · ∇ δf
(0)
e

f0e
+

e

Te

[
vg + vc

(
1 − u‖0e

v‖

)]
· ∇φ

− cb0 × ∇φ00

B0
· ∇ δf

(0)
e

f0e
+ (v‖ − u‖0e)

e

cTe
∂tA‖00

− e

Te
u‖0e δE‖ + u‖0e

µ

Te

δB

B0
· ∇B0

}
, (31)

where δf
(0)
e is the adiabatic component of the electron

perturbed distribution function, δE‖ is the nonzonal component
of the parallel electric field. In (30) and (31), κα is given by

κα = ∇n0α

n0α

+

[
µB0

Tα

+
mα(v‖ − u‖0α)2

2Tα

− 3

2

] ∇Tα

Tα

+
m(v‖ − u‖0α)∇u‖0α

Tα

. (32)

The curvature drift operator in (30) and (31) reads

vc · ∇ = mαcv2
‖

ZαB3
0

B0 × ∇B0 · ∇ +
mαcv2

‖
ZαB2

0

∇ × B0 · ∇. (33)

In previous implementation, the second term on the right-
hand side in (33) is dropped because it is on the order of
k‖/k⊥ compared with the first term. Here this term is retained
for consistency as all the ∇ × B0 terms are retained in this
formulation. Also implemented is the parallel Ampère law

Zin0iu‖0i − en0eu‖0e = c

4π
b0 · ∇ × B0 (34)

being enforced on the equilibrium flows of all species for a
given B0 from equilibrium solver such as EFIT.

3
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3. Reduction of gyrokinetic formulation to linear
ideal MHD

In this section, we prove that in the linear and long wavelength
limit, the gyrokinetic formulation described in section 2
reduces to the ideal MHD eigenmode equation (A.9) in
appendix A.

3.1. Reduction of gyrokinetic Poisson’s equation and
Ampère’s law

The integral
∫

X→x
dv in (8) has two parts as can be seen in

(11). The first part, which is over the gyro-centre velocity
space, is the same as

∫
GC dv defined in (14). The second part

of the integral, which is the transformation between the gyro-
centre coordinates and the particle coordinates, gives rise to
an operator J0(k⊥ρ), where J0() is the Bessel function. In
GTC, this J0(k⊥ρ) is implemented accurately in the charge
scattering from each particle’s gyro-centre to its gyro-orbit
when collecting charges from the particles [9]. Note that the
gyro-averaging on the perturbed field quantities also gives rise
to an operator J0(k⊥ρ) [13]:

〈δφ〉c = J0(k⊥ρ) δφ. (35)

In the long wavelength limit of k⊥ρi < 1, for comparison with
ideal MHD theory, we can expand the J2

0 operator and keep
terms up to O(k2

⊥ρ2):

J
2
0(k⊥ρi) = J

2
0

(
k⊥

√
2µB0/mi

�i

)

≈ 1 − µmic
2

Z2
i B0

k2
⊥

= 1 +
µmic

2

Z2
i B0

∇2
⊥. (36)

Then δφ̃i becomes [9]

δφ̃ ≈ δφ +
mic

2Ti

Z2
i B

2
0

∇2
⊥ δφ. (37)

Equation (6) reduces to

∑
α=i,e

Zα δnα = Z2
i ni

Ti
(δφ − δφ̃)

≈ − n0imic
2

B2
0

∇2
⊥ δφ

= − c2

4πv2
A

∇2
⊥ δφ, (38)

where

v2
A = B2

0

4πn0imi
. (39)

In the ideal MHD limit, the parallel electric field is zero,
δE‖ = 0, and as a result:

∂t δA‖ = −cb0 · ∇ δφ. (40)

We combine (38), (7) and (40), and take the linear normal
mode theory substitutions ∂t → −iω and b0 · ∇ → ik‖ to get
a reduced equation:

ω2

v2
A

∇2
⊥ δφ + iB0 · ∇

[∇2
⊥(k‖ δφ)

B0

]

+ iω
4π

c2

∑
α

(−iωZα δnα + ∇ · δJ‖α) = 0. (41)

3.2. Reduction of ion gyrokinetic equation

To obtain an equation describing δni and δJ‖i for the ion
species, we operate

∫
X→x

dv on the gyrokinetic equation (1).
Similar to (35), the gyro-averaging gives rise to a J0(k⊥ρi)

operator:
〈δB〉c = J0(k⊥ρi) δB, (42)

〈A‖〉c = J0(k⊥ρi)A‖. (43)

We integrate the gyrokinetic equation in the linear limit,

0 =
∫

X→x

dv(∂t + Ẋ · ∇ + v̇‖∂v‖)(f0i + δfi)

= B0 · ∇
(

n0iu‖0i

B0

)
+

c∇ × b0

Zi
· ∇

(
P‖0i

B0

)

+
cb0 × ∇B0

Zi
· ∇

(
P⊥0i

B2
0

)
+

c∇ × b0 · ∇B0

ZiB
2
0

P⊥0i

+ ∂t δni + δB · ∇
(

n0iu‖0i

B0

)
+ B0vE · ∇

(
n0i

B0

)

+ B0 · ∇
(

n0i δu‖i

B0

)
+

c∇ × b0

Zi
· ∇

(
δP‖i

B0

)

+
cb0 × ∇B0

Zi
· ∇

(
δP⊥i

B2
0

)
+

c∇ × b0 · ∇B0

ZiB
2
0

δP⊥i

+
c∇ × b0

B0
· n0i∇ δφ +

mic
2

Z2
i B0

(∇2
⊥ δB) · ∇

(
P0iu‖0i

B2
0

)

− mic
3b0 × ∇P0i

Z2
i B

2
0

· ∇ ∇2
⊥ δφ

B0

+
mic

3P0i(3b0 × ∇B0 + ∇ × B0)

Z2
i B

3
0

· ∇ ∇2
⊥ δφ

B0
. (44)

This equation can be separated into the equilibrium continuity
equation:

B0 · ∇
(

n0iu‖0i

B0

)
+

c∇ × b0

Zi
· ∇

(
P‖0i

B0

)

+
cb0 × ∇B0

Zi
· ∇

(
P⊥0i

B2
0

)
+

c∇ × b0 · ∇B0

ZiB
2
0

P⊥0i = 0,

(45)

and the linear continuity equation:

0 = ∂t δni + δB · ∇
(

n0iu‖0i

B0

)
+ B0vE · ∇

(
n0i

B0

)

+ B0 · ∇
(

n0i δu‖i

B0

)
+

c∇ × b0

Zi
· ∇

(
δP‖i

B0

)

+
cb0 × ∇B0

Zi
· ∇

(
δP⊥i

B2
0

)
+

c∇ × b0 · ∇B0

ZiB
2
0

δP⊥i

+
c∇ × b0

B0
· n0i∇ δφ +

mic
2

Z2
i B0

(∇2
⊥ δB) · ∇

(
P0iu‖0i

B2
0

)
︸ ︷︷ ︸

{i}

4
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−mic
3b0 × ∇P0i

Z2
i B

2
0

· ∇ ∇2
⊥ δφ

B0︸ ︷︷ ︸
{ii}

+
mic

3P0i(3b0 × ∇B0 + ∇ × B0)

Z2
i B

3
0

· ∇ ∇2
⊥ δφ

B0︸ ︷︷ ︸
{iii}

. (46)

These two equations are the same as those of the electrons
(15) and (20) in the linear limit except for the last three terms
in (46), which are introduced by the ion finite Larmor radius
(FLR) effects. In the k⊥LB0 ∼ k⊥R0 
 1 limit (but still
k⊥ρi � 1), the term {ii} becomes:

{ii} ≈ − mic
2n0i

ZiB
2
0

cb0 × ∇P0i

ZiB0n0i
· ∇∇2

⊥ δφ

= − mic
2n0i

ZiB
2
0

v∗i · ∇∇2
⊥ δφ, (47)

where

v∗i = cb0 × ∇P0i

ZiB0n0i
. (48)

This term is responsible for producing the kinetic ballooning
mode [14]. We compare the ordering of this term with the
other two FLR terms:

O

( {iii}
{ii}

)
∼ LP0i

LB0

, (49)

O

( {i}
{ii}

)
∼ k‖u‖0i

ω

(
1 +

LP0i

Lu‖0i

− 2
LP0i

LB0

)
, (50)

where L(·) ≡ 1/|∇ ln(·)| denotes the characteristic gradient
length. In the case of LP0i < LB0 , LP0i � Lu‖0i and k‖u‖0i � ω,
the terms {i} and {iii} are not important and can be dropped.
For typical tokamak scalings, LB0 ∼ R0, LP0i ∼ a, Lu‖0i � a

and u‖0i � vA ∼ ω/k‖, so LP0i < LB0 , LP0i � Lu‖0i and
k‖u‖0i � ω are usually satisfied. Keeping term {ii} as the only
FLR effect, the ion continuity equation becomes

Zi∂t δni + B0 · ∇
(

Zin0i δu‖i

B0

)
= −iωZi δni + ∇ · δJ‖i

≈ −δB · ∇
(

J‖0i

B0

)
− B0vE · ∇

(
Zin0i

B0

)

+
mic

2n0i

B2
0

v∗i · ∇∇2
⊥ δφ − c∇ × b0 · ∇

(
δP‖i

B0

)

− cb0 × ∇B0 · ∇
(

δP⊥i

B2
0

)
− c∇ × b0 · ∇B0

B2
0

δP⊥i

− c∇ × b0

B0
· Zin0i∇ δφ. (51)

3.3. Reduction to linear ideal MHD

The electron continuity equation (27) in the linear limit is

−e∂t δne − B0 · ∇
(

en0e δu‖e

B0

)
= iωe δne + ∇ · δJ‖e

= −δB · ∇
(

J‖0e

B0

)
+ B0vE · ∇

(
en0e

B0

)

− c∇ × b0 · ∇
(

δP‖e

B0

)
− cb0 × ∇B0 · ∇

(
δP⊥e

B2
0

)

− c∇ × b0 · ∇B0

B2
0

δP⊥e +
c∇ × b0

B0
· en0e∇ δφ. (52)

Plugging (52) and (51) into (41), and considering (39), quasi-
neutrality

∑
α Zαn0α = 0 and Ampère’s law for equilibrium∑

α J‖0α = c
4π

b0 · ∇ × B0, we obtain:

0 = ω(ω − ω∗P)

v2
A

∇2
⊥ δφ + iB0 · ∇

[∇2
⊥(k‖ δφ)

B0

]

− i∇(k‖ δφ) × b0 · ∇
(

b0 · ∇ × B0

B0

)

− iω
4π

c

[
∇ × b0 · ∇

(
δP‖
B0

)
+ b0 × ∇B0 · ∇

(
δP⊥
B2

0

)

+
∇ × b0 · ∇B0

B2
0

δP⊥

]
, (53)

where δP‖ = ∑
α δP‖α , δP⊥ = ∑

α δP⊥α , and

ω∗P = −iv∗i · ∇ (54)

is the ion diamagnetic frequency. Note that ω∗P only operates
on perturbed quantities.

Now the first three terms of (53) match those of the ideal
MHD eigenmode equation (A.9) in appendix A. The last
term of (53), i.e. the pressure term, looks different from the
corresponding term of (A.9). In appendices B and C, we show
that the difference is negligible. Therefore, the gyrokinetic
formulation reduces to the ideal MHD theory in the linear and
long wavelength limit.

The first term in (53) is the inertial term, with the
ω∗P term responsible for the kinetic ballooning mode. The
second term is the field line bending term responsible for
the shear Alfvén wave. The third term is the current
driving term. Most previous gyrokinetic simulations drop this
current driving term. Retaining this term in this formulation
gives the capability to simulate current-driven modes such
as the kink mode. The last term is the pressure gradient
term responsible for pressure-driven instabilities such as
the interchange instability and the ideal ballooning mode.
Equation (53) shows that gyrokinetic simulation can be used to
study kinetic MHD modes including interchange modes, kink
modes and shear Alfvén waves excited by energetic particles,
where kinetic effects are important.

4. Parallel equilibrium current effects on RSAE

The gyrokinetic simulation model with equilibrium current
and nonlinear terms has been implemented in GTC. The
implementation details are given in appendices D and E. In
this section, we verify the simulation model by demonstrating
the effects of equilibrium current on RSAE as predicted by
theory.

4.1. Analytic calculation

In a reversed shear tokamak with concentric-circular flux
surfaces, in a uniform plasma and zero-β limit, (53) for one
n and m harmonic δφ(r, θ, ζ ) = δφ̂(r) exp[i(nζ − mθ)] near
the qmin surface becomes [4]

1

r

d

dr

(
r


d

dr
δφ̂

)
− m2

r2

 δφ̂ − D

r
δφ̂ = 0, (55)
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Figure 1. (a) Safety factor q-profile. (b) Alfvén continua of
n = 4, m = 6 and n = 4, m = 7 in the ideal MHD limit and without
linear toroidal coupling; RSAE∗: frequency of m = 6 RSAE without
equilibrium current (0.448 vA0/R0).

where


 = ω2

v2
A

− k2
‖, (56)

and D represents contributions from fast ion pressure [6],
background plasma pressure gradient [15], toroidal coupling
[16], magnetic shear, etc. The first two terms of (55) give
the Alfvén continuum. The last term determines whether an
eigenmode exists near the Alfvén continuum extremum. Here
we only consider the magnetic shear effect to examine the
effects of the parallel equilibrium current b0 · ∇ × B0. When
the parallel equilibrium current is ignored,

D = k‖k′
‖ + rk‖k′′

‖ . (57)

The prime symbol (′ ) in this section denotes the derivative with
respect to r . At the qmin surface, noting that k′

‖ = 0 and
k′′
‖ �= 0, D is nonzero and an RSAE exists as can be shown

by numerically solving (55). With the inclusion of parallel
equilibrium current [6],

D = −2k‖k′
‖, (58)

which is zero at the qmin surface and thus eigenmode does
not exist. Note that other effects contributing to D mentioned
above can also form an eigenmode.

4.2. Verification in simulation

To verify the implementation of the equilibrium current, we
simulate a tokamak case with concentric-circular flux surfaces.
The parameters are taken from [4]. The q-profile is shown
in figure 1(a), whose corresponding Alfvén continua of n =
4, m = 6 and n = 4, m = 7 without linear toroidal coupling
are shown in figure 1(b). The n = 4, m = 6 mode is studied

here to avoid complication by the toroidal coupling effect,
because the toroidal coupling effect cannot make an RSAE
below the continuum minimum [16]. In the ideal MHD limit,
RSAE exists when the equilibrium current is not taken into
account.

The differences between the simulations without and with
the equilibrium current can be seen in the contour plots of δφ

in the radial-time space in figure 2. Figure 2(a) corresponds
to the case without the equilibrium current. An eigenmode
exists and the mode structures are horizontal, indicating that δφ
at different radial locations oscillates at the same eigenmode
frequency. For the case with the equilibrium current shown
in figure 2(b), where no eigenmode exists, δφ at every radial
location oscillates at the local continuum frequency, leading
to the bending of the mode structures or the so-called phase
mixing. The fast damping of the mode amplitude due to the
phase mixing in figure 2(b) also indicates that there is no
eigenmode in this case. Therefore, the simulation results are
consistent with the analytic calculation in section 4.1.

5. Conclusion

A nonlinear gyrokinetic simulation model incorporating
equilibrium current has been formulated for studying kinetic
magnetohydrodynamic processes in magnetized plasmas. This
complete formulation enables gyrokinetic simulation of both
pressure-gradient-driven and current-driven instabilities as
well as their nonlinear interactions in multi-scale simulations.
The gyrokinetic simulation model recovers the ideal
magnetohydrodynamic theory in the linear long wavelength
regime including ideal and kinetic ballooning modes, kink
modes and shear Alfvén waves. The implementation of this
model in the global gyrokinetic particle code has been verified
for the simulation of the effects of equilibrium current on the
reversed shear Alfvén eigenmode in tokamaks.
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Appendix A. Linear ideal MHD theory with
equilibrium current

We begin with the single-fluid linearized momentum equation
of the ideal MHD theory [17].

n0imi(∂t +v0 ·∇)δv+∇·δP = 1

c
(δJ⊥×B0 +J0×δB), (A.1)

where the leading order of the equilibrium velocity is the ion
diamagnetic velocity:

v0 = v∗, (A.2)

with v∗i defined in (48). The leading order of the perturbed
velocity is the E × B drift:

δv⊥ = cb0 × ∇ δφ

B0
. (A.3)
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Figure 2. Contour plots of
√

〈δφ2〉fs in the radial-time space in RSAE simulations, where 〈·〉fs indicates flux surface averaging: (a) without
equilibrium current; (b) with the inclusion of equilibrium current. The time is normalized to R0/vA0, where vA0 is the on-axis Alfvén
velocity.

In (A.1), the δv ·∇v0 term is dropped due to being higher order
compared with v0 · ∇ δv.

In the following derivation, linear normal mode
substitutions (∂t → −iω, b0 · ∇ → ik‖) will be applied. By
taking B0× (A.1) and considering (A.3), we obtain:

δJ⊥ = i(ω − ω∗P)c
2

4πv2
A

∇⊥ δφ +
cb0

B0
× ∇ · δP

− b0

B0
× (J‖0b0 × δB⊥)

= i(ω − ω∗P)c
2

4πv2
A

∇⊥ δφ +
cb0

B0
× ∇ · δP +

J‖0

B0
δB⊥.

(A.4)

In the δE‖ = 0 and δB‖ = 0 limit, we have (40) and

δB⊥ = ∇ × (δA‖b0) � ∇ δA‖ × b0. (A.5)

By plugging the parallel Ampère law:

δJ‖ = c

4π
b0 · ∇ × δB⊥, (A.6)

J‖0 = c

4π
b0 · ∇ × B0, (A.7)

and (A.4) into the quasi-neutrality and charge conservation
equation, we obtain:

0 = ∇ · δJ = ∇ · δJ⊥ + ∇ · δJ‖

= i(ω − ω∗P)c
2

4π
∇ ·

(
1

v2
A

∇⊥ δφ

)
+ c∇ ·

(
b0

B0
× ∇ · δP

)

+ ∇ ·
(

J‖0

B0
δB⊥

)
+ ∇ ·

(
δJ‖
B0

B0

)

= i(ω − ω∗P)c
2

4π
∇ ·

(
1

v2
A

∇⊥ δφ

)
+ c∇ ·

(
b0

B0
× ∇ · δP

)

+ δB⊥ · ∇
(

J‖0

B0

)
+

J‖0

B0
����∇ · δB⊥

+ B0 · ∇
(

δJ‖
B0

)
+

δJ‖
B0

���∇ · B0

= i(ω − ω∗P)c
2

4π
∇ ·

(
1

v2
A

∇⊥ δφ

)
+ c∇ ·

(
b0

B0
× ∇ · δP

)

+
c2

4πω
∇(k‖ δφ) × b0 · ∇

(
b0 · ∇ × B0

B0

)

− c2

4πω
B0 · ∇

[∇2
⊥(k‖ δφ)

B0

]
. (A.8)

In the LvA 
 Lδφ limit, rewrite (A.8) to get the ideal MHD
equation with equilibrium current:

ω(ω − ω∗P)

v2
A

∇2
⊥ δφ + iB0 · ∇

[∇2
⊥(k‖ δφ)

B0

]

− i∇(k‖ δφ) × b0 · ∇
(

b0 · ∇ × B0

B0

)

− iω
4π

c
∇ ·

(
b0

B0
× ∇ · δP

)
= 0. (A.9)

In section 3, we showed that in the long wavelength limit, the
gyrokinetic formulation used in GTC reduces to this equation.

Appendix B. The pressure term mismatch between
gyrokinetic and MHD theory is negligible

For comparison, we write down the pressure terms (with
the −iω4π/c coefficients removed) from the two different
approaches of MHD and gyrokinetic:

PTMHD = ∇ ·
(

b0

B0
× ∇ · δP

)
, (B.1)

PTGK = ∇ × b0 · ∇
(

δP‖
B0

)
+ b0 × ∇B0 · ∇

(
δP⊥
B2

0

)

+
∇ × b0 · ∇B0

B2
0

δP⊥

= b0 × ∇B0

B2
0

· ∇(δP⊥ + δP‖) +
∇ × B0

B2
0

· ∇δP‖

+
∇ × B0 · ∇B0

B3
0

(δP⊥ − δP‖). (B.2)

7
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Assuming δP is diagonal, which can be justified in the long
wavelength limit (k⊥ρi � 1):

δP = δP‖b0b0 + δP⊥(I − b0b0)

= δP⊥I + (δP‖ − δP⊥)b0b0, (B.3)

we have:

PTMHD = ∇ × B0 + b0 × ∇B0

B2
0

· ∇ δP⊥ +
b0 × ∇B0

B2
0

· ∇ δP‖

+
(∇ × B0)⊥

B0
· ∇

(
δP‖ − δP⊥

B0

)

+
δP‖ − δP⊥

B0

{
∇ ·

[
(∇ × B0)⊥

B0

]
− ∇ × B0 · ∇B0

B2
0

}
.

(B.4)

From a first glance, (B.4) seems to differ from (B.2). We
calculate the mismatch:

PTMHD − PTGK = ∇ ·
(

b0

B0
× ∇ · δP

)

−
[

b0 × ∇B0

B2
0

· ∇(δP⊥ + δP‖)︸ ︷︷ ︸
{1}

+
∇ × B0

B2
0

· ∇δP‖︸ ︷︷ ︸
{2}

+
∇ × B0 · ∇B0

B3
0

(δP⊥ − δP‖)︸ ︷︷ ︸
{3}

]

= ∇ × B0

B2
0

· ∇ δP⊥ − (∇ × B0)‖
B0

· ∇
(

δP‖
B0

)

− (∇ × B0)⊥
B0

· ∇
(

δP⊥
B0

)

+
δP‖
B0

{
∇ ·

[
(∇ × B0)⊥

B0

]
− ∇ × B0 · ∇B0

B2
0

}

−δP⊥
B0

∇ · (∇ × B0)⊥
B0

= (∇ × B0)‖
B2

0

· ∇(δP⊥ − δP‖)︸ ︷︷ ︸
{4}

+2
(∇ × B0)⊥ · ∇B0

B3
0

(δP⊥ − δP‖)︸ ︷︷ ︸
{5}

+
∇ · [(∇ × B0)⊥]

B2
0

(δP‖ − δP⊥)︸ ︷︷ ︸
{6}

. (B.5)

It can be immediately seen that if δP⊥ = δP‖, e.g. in the
isotropic or adiabatic limit, the mismatch vanishes. In the case
of δP⊥ �= δP‖, assuming O(δP⊥) ∼ O(δP‖) ∼ O(δP⊥ ±
δP‖), the mismatch is shown below to be small compared with
the pressure term as follows.

Here we use the scalings of O(k‖/k⊥) ∼ O[1/(k⊥R0)] ∼
O(a/R0) ∼ O(ε), O(βR0/LP0) ∼ 1 and O[(2 − s)/q] ∼ 1.
We first estimate the order of the terms of {1}, {2} and {3} to
find out the leading order of the pressure term.

O({1}) ∼ k⊥
R0

δP⊥,‖
B0

, (B.6)

O({2}) ∼
(

βk⊥
2LP0

+
2 − s

q

k‖
R0

)
δP⊥,‖
B0

, (B.7)

O({3}) ∼ β

2LP0R0

δP⊥,‖
B0

, (B.8)

O

( {2}
{1}

)
∼ βR0

2LP0

+
2 − s

q

k‖
k⊥

∼ 1, (B.9)

O

( {3}
{1}

)
∼ βR0

2LP0

1

k⊥R0
∼ O(ε). (B.10)

The terms {1} and {2} are the leading order terms. Next we only
need to compare the mismatch with one of the leading order
terms {1}. Using (C.5) and (C.6) in appendix C, we obtain

O({4}) ∼ 2 − s

qB0R0
k‖ δP⊥,‖, (B.11)

O({5}) ∼ O({6}) ∼ β

LP0R0

δP⊥,‖
B0

(B.12)

O

( {4}
{1}

)
∼ 2 − s

q

k‖
k⊥

∼ O(ε), (B.13)

O

( {5}
{1}

)
∼ O

( {6}
{1}

)
∼ βR0/LP0

k⊥R0
∼ O(ε). (B.14)

Hence, the mismatch is not important even in the presence
of anisotropic perturbed pressure. Therefore, the gyrokinetic
model reduces to the ideal MHD model in the long wavelength
and linear limit.

Appendix C. Estimation of some magnetic field
parameters in a tokamak

This appendix is to provide the derivation of the estimation of
some quantities used in appendix B.

Noting that the safety factor q ≈ rBζ /(R0Bθ) = εBζ /Bθ ,
where ε = r/R0, the equilibrium magnetic field reads

B0 = Bθ θ̂ + Bζ ζ̂

= Bζ

(
ε

q
θ̂ + ζ̂

)
,

where Bθ and Bζ are the poloidal and toroidal components,
respectively, while θ̂ and ζ̂ are the unit vectors in the poloidal
and toroidal directions, respectively. The toroidal vacuum field
writes

Bζ = BaR0

R
= Ba

1 + ε cos θ
. (C.1)

This can be used to estimate the parallel component of ∇×B0:

(∇ × B0)‖ ≈ ζ̂

r

[
∂r

(
r
ε

q
Bζ

)]

≈ ζ̂
B0

qR0
(2 − s), (C.2)

where

s = r

q

dq

dr
(C.3)

is the magnetic shear. For the perpendicular component of
∇ × B0, the force balance equation is used:

∇P0 = 1

c
J0 × B0

= 1

4π
(∇ × B0) × B0. (C.4)

8
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Take b0× (C.4) to obtain:

(∇ × B0)⊥ = 4π

B0
b0 × ∇P0. (C.5)

Meanwhile,

∇ · [(∇ × B0)⊥] = 4π∇ ·
(

b0

B0
× ∇P0

)

= 4π

B2
0

(∇ × B0 + 2b0 × ∇B0) · ∇P0. (C.6)

It is also straightforward to estimate these quantities:

∇B0 ≈ −BaR0

R2
R̂ ≈ −BaR0

R2
(r̂ cos θ − θ̂ sin θ), (C.7)

b0 × ∇B0 ≈ BaR0

R2

[
−r̂ sin θ − θ̂ cos θ + ζ̂

ε

q
cos θ

]
(C.8)

Appendix D. Implementation of the equilibrium
current terms

In this appendix, we first apply the parallel Ampère law
constraint to the electron parallel equilibrium flow, then write
the equilibrium current terms in magnetic coordinates, and
finally normalize them so that they can be straightforwardly
implemented into GTC.

D.1. Electron equilibrium flow constrained by Ampère’s law

Using the parallel Ampère law (34), (28) becomes:

0 = ∂t δne + B0 · ∇
(

n0e δu‖e

B0

)
+ B0vE · ∇

(
n0e

B0

)

− n0e(δv∗e + vE) · ∇B0

B0

+ δB · ∇

∑

α �=e

Zαn0αu‖0α

eB0
− c

4πeB0
b0 · ∇ × B0




+
c∇ × B0

B2
0

·


−∇ δP‖e

e︸ ︷︷ ︸
{I}

− (δP⊥e − δP‖e)∇B0

eB0︸ ︷︷ ︸
{II}

+n0e∇φ




+ δB · ∇
(

n0eδu‖e

B0

)
+ B0vE · ∇

(
δne

B0

)

+
c δne

B2
0

b0 × ∇B0 · ∇φ +
c δne

B2
0

∇ × B0 · ∇φ. (D.1)

Term {II} compared with term {I} is of order 1/(k⊥R0) � 1,
so it can be dropped.

D.2. Equilibrium current terms in magnetic coordinates

The magnetic coordinates [1, 18] are used in GTC, so the
equilibrium magnetic field is expressed as

B0 = g(ψ)∇ζ + I (ψ)∇θ + δ(ψ, θ)∇ψ (D.2)

= q∇ψ × ∇θ − ∇ψ × ∇ζ. (D.3)

The Jacobian is

J −1 = ∇ψ · ∇θ × ∇ζ = B2
0

gq + I
. (D.4)

The curl of the magnetic field then reads

∇ × B0 = g′∇ψ × ∇ζ + (I ′ − ∂θδ)∇ψ × ∇θ, (D.5)

where the prime symbol (′) denotes the derivative with respect
to ψ . The parallel component writes

b0 · ∇ × B0 = B0
g(I ′ − ∂θδ) − Ig′

gq + I
. (D.6)

The fifth term of (D.1) can be expanded into two
components:

Zα

e
δB · ∇

(
n0αu‖0α

B0

)

≈ Zα

e
∇ δA‖ × b0 · ∇

(
n0αu‖0α

B0

)

= J −1

B0

[
(g∂θ δA‖ − I∂ζ δA‖)∂ψ

(
n0αu‖0α

B0

)

+(δ∂ζ δA‖ − g∂ψ δA‖)∂θ

(
n0αu‖0α

B0

)

+(I∂ψ δA‖ − δ∂θ δA‖)∂ζ

(
n0αu‖0α

B0

) ]
, (D.7)

− c

4πe
δB · ∇

(
b0 · ∇ × B0

B0

)

≈ − c

4πe
∇ δA‖ × b0 · ∇

[
g(I ′ − ∂θδ) − Ig′

gq + I

]

= c

4πe

J −1

B0

[
− g(∂ψS)(∂θ δA‖)

+

(
I∂ψS +

gδ∂2
θ δ

gq + I

)
(∂ζ δA‖) − g2∂2

θ δ

gq + I
(∂ψ δA‖)

]
,

(D.8)

where

∂ψS = ∂ψ

[
g(I ′ − ∂θδ) − Ig′

gq + I

]

= g(I ′′ − ∂ψ∂θδ) − g′∂θδ − Ig′′

gq + I

− [g(I ′ − ∂θδ) − Ig′](g′q + gq ′ + I ′)
(gq + I )2

. (D.9)

The sixth term of (D.1) becomes the summation of these
two terms:

−c∇ × B0

eB2
0

· ∇ δP‖e

= − c

e(gq + I )
[−g′∂θ δP‖e + (I ′ − ∂θδ)∂ζ δP‖e]. (D.10)

n0e
c∇ × B0

B2
0

· ∇ δφ = n0ec

gq + I
[−g′∂θ δφ + (I ′ − ∂θδ)∂ζ δφ].

(D.11)

9



Nucl. Fusion 52 (2012) 023005 W. Deng et al

The last term of (D.1) reads

+
c δne

B2
0

∇ × B0 · ∇φ = c δne

gq + I
[−g′∂θφ + (I ′ − ∂θδ)∂ζ φ].

(D.12)
The ∇ × B0 term in (33) becomes

mαcv2
‖

ZαB2
0

∇ × B0 · ∇ = mαcv2
‖

ZαB2
0

J −1[−g′∂θ + (I ′ − ∂θδ)∂ζ ].

(D.13)

D.3. Normalization of the equilibrium current terms

The normalization units and symbols in [1] are used.
Normalize (D.1) to be

0 = ∂t δne + B0 · ∇
(

n0e δu‖e

B0

)
+ B0vE · ∇

(
n0e

B0

)

− n0e(δv∗e + vE) · ∇B0

B0

+
∑
α �=e

Zα δB · ∇
(

n0αu‖0α

B0

)

− 2

βa

ρ2
a

R2
0

δB · ∇
(

b0 · ∇ × B0

B0

)

+
∇ × B0

B2
0

·
[
−∇ δP‖e − (δP⊥e − δP‖e)∇B0

B0
+ n0e · ∇φ

]

+ δB · ∇
(

n0eδu‖e

B0

)
+ B0vE · ∇

(
δne

B0

)

+
δne

B2
0

b0 × ∇B0 · ∇φ +
δne

B2
0

∇ × B0 · ∇φ, (D.14)

where

βa = 8πnaTa

B2
a

, (D.15)

ρ2
a = Ta

mp�2
p

, (D.16)

with Ta being the electron on-axis temperature. Normalize
(D.7)–(D.12) to obtain:

ZαδB · ∇
(

n0αu‖0α

B0

)

= J −1

B0

[
(g∂θ δA‖ − I∂ζ δA‖)∂ψ

(
n0αu‖0α

B0

)

+(δ∂ζ δA‖ − g∂ψ δA‖)∂θ

(
n0αu‖0α

B0

)

+(I∂ψ δA‖ − δ∂θ δA‖)∂ζ

(
n0αu‖0α

B0

) ]
, (D.17)

− 2

βa

ρ2
a

R2
0

δB · ∇
(

b0 · ∇ × B0

B0

)

= 2

βa

ρ2
a

R2
0

J −1

B0

[
− g(∂ψS)(∂θ δA‖)

+

(
I∂ψS +

gδ∂2
θ δ

gq + I

)
(∂ζ δA‖) − g2∂2

θ δ

gq + I
(∂ψ δA‖)

]
,

(D.18)

∂ψS = ∂ψ

[
g(I ′ − ∂θδ) − Ig′

gq + I

]

= g(I ′′ − ∂ψ∂θδ) − g′∂θδ − Ig′′

gq + I

− [g(I ′ − ∂θδ) − Ig′](g′q + gq ′ + I ′)
(gq + I )2

, (D.19)

−∇ × B0

B2
0

·∇ δP‖e = − 1

gq + I
[−g′∂θ δP‖e+(I ′−∂θδ)∂ζ δP‖e],

(D.20)

n0e
∇ × B0

B2
0

·∇φ = n0e

gq + I
[−g′∂θφ+(I ′−∂θδ)∂ζ φ], (D.21)

δne

B2
0

∇ ×B0 ·∇φ = δne

gq + I
[−g′∂θφ +(I ′ −∂θδ)∂ζ φ]. (D.22)

Appendix E. Magnetic field model with finite
∇ × B0

In this appendix we keep the normalized quantities. All
quantities in this appendix are equilibrium quantities, so the
equilibrium subscript 0 for the magnetic field is omitted. The
equilibrium geometry in GTC can either be taken from EFIT
[19] as numerical accurate representation [20], or specified as
the analytic approximate model. A simple analytic equilibrium
in GTC for the magnetic field model is

B = 1 − ε cos θ + O(ε2), (E.1)

I = 0 + O(ε2), (E.2)

g = 1 + O(ε2), (E.3)

δ = 0 + O(ε), (E.4)

θ = θ0 + O(ε), (E.5)

ζ = ζ0 + O(ε), (E.6)

where ε = r/R0 is the normalized radial coordinate, θ0 and ζ0

are the geometric poloidal and toroidal angles, and θ and ζ are
the corresponding magnetic coordinates. Such a field model
makes all the derivatives of g and I in (D.2) zero, thus leading
to zero equilibrium current. Here we extend this simple field
model to a higher order one to recover the equilibrium current.

We assume concentric circular magnetic surfaces.

′ = d

dψ
= dε

dψ

d

dε
= q

ε

d

dε
, (E.7)

In the large-aspect-ratio limit, we expand the field related
quantities with respect to ε:

B = 1 − ε cos θ0 + ε2B2 + ε3B3 + · · · , (E.8)

I = ε2I2 + ε3I3 + · · · , (E.9)

g = 1 + ε2g2 + ε3g3 + · · · , (E.10)

θ = θ0 + εθ1 + ε2θ2 + · · · , (E.11)

ζ = ζ0 + εζ1 + ε2ζ2 + · · · , (E.12)

where gi and Ii (i = 2, 3, . . .) are functions of the safety factor
q; and Bi , θi and ζi (i = 1, 2, . . .) are periodic functions of θ0.

10



Nucl. Fusion 52 (2012) 023005 W. Deng et al

We want the field model to satisfy these conditions.

• The Jacobian satisfies J −1 = ∇ψ ·∇θ ×∇ζ = B2/(gq +
I ) so that I is a function of only ψ (equivalently ε, because
of concentric-circular flux surfaces).

• The radial component of the field is zero because of
concentric-circular flux surfaces: Bε = εδ/q + I∂εθ +
g∂εζ = 0.

• The field magnitude expression is consistent with the
covariant representation: B = |δ∇ψ + I∇θ + g∇ζ |.

• The field line is straight in the (θ, ζ ) space, so B ·∇ζ/(B ·
∇θ) = q(ψ) with q being the safety factor which is
independent of θ and ζ .

By plugging the expansions (E.8)–(E.12) into the above
conditions, and solving them up to the O(ε) order, we obtain

B = 1 − ε cos θ0 + O(ε2), (E.13)

δ = ε sin θ0 + O(ε2) = ε sin θ + O(ε2), (E.14)

I = ε2

q
+ O(ε4), (E.15)

I ′ = 2 − s + O(ε2), (E.16)

g = 1 + O(ε2), (E.17)

g′ = O(ε0), (E.18)

θ = θ0 − ε sin θ0 + O(ε2), (E.19)

θ0 = θ + ε sin θ + O(ε2), (E.20)

ζ = ζ0 + O(ε4), (E.21)

∇ × B = O(ε0)∇ψ × ∇ζ

+[(2 − s) − ε cos θ + O(ε2)]∇ψ × ∇θ, (E.22)

b · ∇ × B = J −1

B
[(2 − s) − ε cos θ0 + O(ε)]. (E.23)

Although it is straightforward to solve the equations up to the
O(ε2) order, such a model would not be very useful because
other effects come into play at the order of O(ε2) or even lower,
such as the Shafranov shift and the finite pressure gradient
effect. All of those effects are retained in the numerical
equilibrium using EFIT solution. The field model of order
O(ε), i.e. (E.13)–(E.21), is good enough to recover the parallel
current and is therefore implemented. This first-order set of
equilibrium is similar to an earlier GTC electrostatic simulation
using analytic equilibrium [21]. It is straightforward to
show that in (D.17)–(D.22) the terms containing the non-
orthogonality factor δ are one order smaller than the leading
order, and hence are dropped in the implementation for
simplicity.
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