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Electrostatic drift wave turbulence in tokamak plasmas with reversed magnetic shear is studied
using global gyrokinetic particle simulations. The linear eigenmode of the ion temperature gradient
�ITG� instability exhibits a mode gap around the minimum safety factor �qmin� region, particularly
when qmin is an integer, due to the rarefaction of rational surfaces. The collisionless trapped electron
mode �CTEM� instability is suppressed in the negative-shear region due to the reversal of the
toroidal precessional drift of trapped electrons. However, after nonlinear saturation, the ITG gap is
filled up by the turbulence spreading and the CTEM fluctuation propagates into the stable
negative-shear region. The steady state turbulence occupies the whole volume without any
identifiable gap or coherent structures of the heat conductivity, perturbed temperature, or zonal flows
in the qmin location or the reversed shear region. Our finding indicates that the electrostatic drift
wave turbulence itself does not support either linear or nonlinear mechanism for the formation of
internal transport barriers in the reversed magnetic shear when qmin crossing an integer. © 2009
American Institute of Physics. �doi:10.1063/1.3243918�

I. INTRODUCTION

Turbulent transport in toroidal plasmas is usually driven
by microscopic drift wave instabilities,1 of which the linear
properties could be affected by the magnetic shear �radial
derivative of the safety factor q�. Tokamak experiments with
reversed magnetic shear2–4 observed improved confinement
and formation of internal transport barriers. A minimum of
the safety factor �qmin� exists in these experiments roughly in
the middle of the radial direction so that the magnetic shear
is negative �reversed� in the core and positive �normal� at the
edge.

Several mechanisms based on the linear theory of the
electrostatic, toroidal drift wave eigenmodes have been pro-
posed to explain the reduction of the turbulent transport in
the reversed shear plasmas. A popular theory is that the zero
magnetic shear at the radial location of the qmin weakens the
coupling of the poloidal harmonics, which creates a gap in
the toroidal eigenmodes of the ion temperature gradient
�ITG� instability5 around the qmin region due to the rarefac-
tion of the mode rational surfaces6 or the presence of a flow
shear.7 Beyond the linear theory, a gap in the fluctuation
intensity could also be created by enhanced generation of
sheared flows6,8 and convective cells,9 or the fluctuation-
induced profile corrugations.10 However, some nonlinear
simulations do not observe such a mode gap due to the ex-
istence of a slablike branch of the ITG instability11 or the
turbulence spreading and avalanche.12 Another possible
mechanism is that the reversal of the magnetic shear can
reverse the direction of the toroidal precessional drift of
magnetically trapped electrons,13 and therefore suppress the
collisionless trapped electron mode �CTEM� driven by the
precessional resonance.14

The width of the linear mode gap is larger if qmin is a
lower order rational number, particularly an integer. Indeed,
many tokamak experiments15–18 observed the formation of
internal transport barriers when the time-dependent qmin

passing through an integer value. The onset of the transport
barriers is sometimes accompanied by bursts of magnetohy-
drodynamic �MHD� activities.19,17 The generation of sheared
flows by the MHD modes has been conjectured to be able to
suppress the transport driven by the electrostatic
microturbulence.20,21 However, the mechanism of the MHD-
generated sheared flows has not been tested in a fully
self-consistent nonlinear simulation treating both MHD
modes and microturbulence. In short, the experimental evi-
dence of the correlation between the formation of internal
transport barriers and the qmin crossing an integer is not well
understood.

In this work, we investigate the linear and nonlinear
properties of the electrostatic toroidal drift wave turbulence
in the reversed magnetic shear plasmas with the qmin being a
low-order rational number, particularly an integer. Global
simulations using the gyrokinetic toroidal code �GTC� �Ref.
22� of the electrostatic ITG turbulence shows that a large
mode gap appears in the linear phase when qmin is an integer.
The width of the gap increases when the curvature of the
q-profile decreases. The gap is filled up after the nonlinear
saturation by the turbulence spreading23–25 from both core
and edge. The flux of the fluctuation energy filling in the gap
has been measured. In the steady state turbulence, there is no
clear gap or coherent structures around the qmin region for the
ion heat conductivity, temperature perturbation, or zonal
flows. The simulations of the electrostatic CTEM turbulence
show that the linear eigenmodes only appear in the normal
shear region. After the nonlinear saturation, the turbulence
spreads across the qmin surface into the reversed shear region.
The turbulence spreading is characterized by a front propa-
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gation with a speed of about half of the electron diamagnetic
flow. The steady state turbulence occupies the whole volume
without any identifiable structure correlated with the qmin or
the reversed shear region.

Our global gyrokinetic particle simulation results indi-
cate that the electrostatic drift wave turbulence itself does not
support either linear or nonlinear mechanism for the forma-
tion of internal transport barriers in the reversed magnetic
shear when qmin crossing an integer. Other external mecha-
nisms, such as sheared flows generated by MHD activities,
are worth pursuing as possible agents to suppress the elec-
trostatic drift wave turbulence and form the internal transport
barriers when qmin crossing an integer. Our results of nonlo-
cal effects also raise the issue of the validity of previous
local simulations finding the transport reduction due to the
drift reversal or the rarefaction of mode rational surfaces in
the reversed shear plasmas.

The paper is organized as follows. The simulation model
is described in Sec. II. The simulations of the ITG turbulence
and the CTEM turbulence are discussed in Secs. III and IV,
respectively. Section V summarizes the results and gives the
conclusions.

II. SIMULATION MODEL

In electrostatic simulations, the plasma is described by
the electrostatic gyrokinetic equation:26,27

d

dt
f��X,�,v�,t� � � �

�t
+ Ẋ · �+ v̇�

�

�v�
� f� = 0, �1�

where f��X ,� ,v� , t� is the particle distribution function in
terms of the gyrocenter X, the magnetic moment �, the par-
allel velocity v�, and time t:

Ẋ = v�b0 + vE + vg + vc, �2�

v̇� = −
1

m�

B0
�

B0
· �� � B0 + Z� � �̄� , �3�

B0
� = B0 +

v�

��

b0 � �B0. �4�

Here the subscript �= i ,e stands for particle species, Z� is the
particle electric charge, and m� is the particle mass. B0 is the
equilibrium B-field and b0�B0 /B0 is the unit vector. �̄ is the
gyrophase-averaged electrostatic potential. The E�B drift
velocity vE, the �B drift velocity vg, and the curvature drift
velocity vc are given by:

vE =
cb0 � ��̄

B0
, �5�

vg =
1

m���

�b0 � �B0, �6�

vc =
1

��

v�
2� � b0. �7�

The electrostatic potential � is described by gyrokinetic
Poisson’s equation:28

1

�Di
2 �� − �̃� = 4�	

�

Z�n�, �8�

where �Di
2 �Ti / �4�n0iZi

2� is the ion Debye length, and n�

�
f�dv is the particle density. �̃ is the second gyrophase-
averaged potential and defined as28,29

�̃�x� =
1

2�
� �̄�X�f0i�X,�,v����X − x + �i�dXd�dv�d	 ,

�9�

where f0i�X ,� ,v�� is the ion equilibrium gyrocenter distribu-
tion function, �i�−vi��b0 /�i is the ion gyroradius vector,
�i is the ion cyclotron frequency, and 	 is the gyrophase
angle. In the long wavelength �kr
i�1� and high aspect ratio
�R0 /a�1� limit, the zonal component of � is described by


i
2

�Di
2 ��

2 �� = − 4�	
�

Z��n� , �10�

where � ·  means averaging over the flux surface. The system
described by Eqs. �1� and �8� is closed. In our simulations,
GTC30,31 uses the particle-in-cell method to solve the gyro-
center distribution functions and � iteratively in the toroidal
geometry. When solving Eq. �1�, ions and electrons are
treated differently because of their large mass ratio. For ions,
field quantities on the guiding center are averaged over a
gyro-orbit. Electrons are treated adiabatic in the simulations
of the ITG turbulence. In the simulations of the CTEM tur-
bulence, a fluid-kinetic hybrid electron model32,33 based on
the drift-kinetic limit of Eq. �1� is used.

The poloidal cross sections of the flux surfaces are con-
centric circles. Parabolic q-profiles with a reversed shear are
used:

q�r� = qmin + c1�r/a − 0.5�2, �11�

where a is the minor radius. The profile of q�r� has a mini-
mum value qmin at the r=0.5a surface, which will be called
the qmin surface in this paper. The value of c1 represents the
curvature of the q-profile. Temperature and density gradients
have a profile of exp�−��r /a−0.5� /rw�6�. In this work
hydrogen plasmas are simulated, which have the properties
of Zi=+e and mi /me=1837.
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III. ITG TURBULENCE

In toroidal plasmas, ion magnetic drift is faster in higher
temperature regions and slower in lower temperature regions.
When an electrostatic perturbation makes ripples on an iso-
thermal surface, the difference in drift speed causes a charge
accumulation, which then generates an electric field. In the
outer region of the poloidal cross section, i.e., the so called

bad curvature region, the E�B drift caused by such an elec-
tric field amplifies the ripples, therefore leading to an insta-
bility called the ITG instability.1

The ITG instability is excited when i�Ln /LTi
is

larger than a certain threshold value. The threshold value
depends on the geometry, the theoretical model, and the
physical parameters.1 We start our simulations with i=2.9.
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FIG. 1. �Color� The electrostatic potential � structures of the ITG instability. Left column �a�: � in the poloidal plane, black circle indicating the qmin surface.
Right column �b�: flux-surface-averaged potential intensity ��2 and rational surface distribution as a function of radius r.
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R0 /Ln=3.0 and Te /Ti=1 on the qmin surface. Other param-
eters are a /R0=1 /3 and rw=0.28.

A. Linear eigenmode structures

In the linear phase of the simulations, because �f / f0

�1, the nonlinear terms in the equations governing the sys-
tem can be neglected. The linear theory is then an eigenvalue
problem and linear eigenmodes will form in an initial-value
simulation. Each eigenmode’s amplitude grows exponen-
tially. Such eigenmodes are observed in our simulations and
discussed below.

1. Mode gap structure in qmin region

Simulations with various qmin values have been per-
formed to test the sensitivity of the mode structure on the
low-order rational number. We notice that when qmin is an
integer, the eigenmode structure shows a large gap in the qmin

region. A poloidal cross section displaying such a structure
with qmin=1 is shown in Fig. 1�a1�. When qmin deviates from
an integer, even if the deviation is very small, e.g., qmin

=0.9552 or 0.888, the gap disappears. Poloidal cross sections
of these two cases are shown in Fig. 1�a2� and Fig. 1�a3�,
respectively. The device size is a /
i=250 in these simula-
tions. For qmin=2, we do not see the gap structure until i is
reduced from 2.9 to 1.3. This indicates that the gap structure
may not show up under a strong temperature gradient drive.

2. Mode rational surface distribution

The electrostatic potential can be expressed as a summa-
tion of different n �toroidal� and m �poloidal� harmonics:

��r,�,�� = 	
n

	
m

�̂n,m�r�ei�n�−m��. �12�

Due to the symmetry in the � direction and the asymmetry in
the � direction, the n harmonics are decoupled in the linear
theory and become different eigenmodes. On the other hand,
the m harmonics are coupled for each n eigenmode. A mode
rational surface for a �n ,m� harmonic is located at the radial
position r where

nq�r� = m . �13�

Since q has a minimum value, for each n number, there ex-
ists a minimum m which has at least one rational surface and
can be expressed as:

mmin�n� = �nqmin� , �14�

where �¯ � is the ceiling function defined as �x�=min
�k�Z �k�x�.

The rational surface distributions in these simulations
are investigated for the formation of the mode gap structures.
Among all the n and m harmonics, only the most unstable
ones matter. The harmonics up to n ,m=192 are kept in the
simulations here. By analyzing the poloidal �m� spectrum on
the qmin surface in our simulations and using an ITG mode
property k� �0, which indicates nq�m, the most unstable
harmonics are in the range of n� �25,95�. The rational sur-
face distribution in various simulations is plotted in the col-
umn �b� of Fig. 1 �the vertical color lines below the ��2

profile plots�. The black lines are the m=mmin rational sur-
faces, the red lines are the m=mmin+1 surfaces, the blues are
the m=mmin+2 surfaces, and so forth. The m�mmin+8 sur-
faces are far away from the qmin region and are thus ignored.
We can see that two large rational surface gaps in the qmin

region appear due to the degeneration of m=mmin surfaces in
the qmin=1 cases, while the noninteger qmin cases do not have
large gaps �filled up by split m=mmin surfaces�.

The simulation results above show that the global mode
structure is sensitive to the rational surface distribution.
These results can be explained by the toroidal coupling. Nor-
mally, the rational surfaces distribute densely all over the
radial space. The toroidal coupling makes the global mode
structure smooth across the qmin region. When qmin is an
integer, the m=mmin�n� rational surfaces degenerate at the
qmin position, forming two gaps in which there is no mode
rational surface. Inside the gap, only the slab branch of the
ITG instability can exist, which is usually much weaker than
the toroidal branch. Therefore, the potential intensity is
greatly reduced in this region, showing a gap in the global
mode structure.

3. Radial width of the mode gaps

The radial width of the mode gaps is sensitive to the
q-profile curvature c1. The ��2 structures and rational sur-
face distribution computed using various c1 values are shown
in Fig. 1�b1-1�, Fig. 1�b1�, and Fig. 1�b1-2�. Here, � is nor-
malized by e /Te. It can be seen that as the parameter c1

increases, the widths of the potential gap and the rational
surface gap decrease. For an integer qmin, from Eqs. �11� and
�13�, we can derive the width of the rational surface gap for
a single n harmonic:

�r

a
=� 1

nc1
. �15�

With all the most unstable harmonics considered, the gap
width is
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FIG. 2. The width of the ITG potential gaps and the rational surface gaps vs
the q-profile curvature c1.
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�rmin

a
=� 1

nmaxc1
, �16�

where nmax is the maximum n number among the most un-
stable harmonics. In these simulations, nmax=95. We define
the width of the potential gap to be its 1 /e width in the ��2
profile, indicated by the blue double arrows in the column �b�
of Fig. 1. Figure 2 shows the widths of the potential gap and
the rational surface gap versus c1. We can see that the poten-

tial gap has a similar width as the rational surface gap, which
agrees with the explanation in Sec. III A 2.

B. Nonlinear evolution

As the mode amplitude grows, nonlinear effects become
important and the mode eventually saturates. We focus on
the qmin=2, i=1.3, a /
i=500 case to analyze the nonlinear
evolution of the ITG turbulence.
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FIG. 3. �Color� ITG mode gap filled up by turbulence. �a� The time history of ��2V with three snapshots in the early nonlinear phase. �b� The ��2 radial
profile snapshots. �c� The flux of E-field intensity �E integrated from time 96 to 112 �R0 /cs�. �d� The time history of ��2 at various positions. �e�-�g� The �
poloidal snapshots. Zonal potential is excluded in all plots.
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1. Gap filled up by turbulence

Figure 3�a� shows the time history of the volume-
averaged potential intensity ��2V excluding zonal potential.
Starting from the time 96 �unit: R0 /cs�, nonlinear effects
come into play and the ITG instability saturates. Three snap-
shots are taken at times 96, 112, and 128. The radial profiles
of flux-surface-averaged potential intensity ��2 excluding
zonal potential at these time shots are shown in Fig. 3�b�. It
is seen that the potential gap structure that forms in the linear
phase is filled up, which can also be seen from the poloidal
cross sections in Figs. 3�e�–3�g�. To see how the field energy
transfers in the radial direction, we calculate the flux of the
E-field intensity averaging over the flux surface, which is
defined as

�E�r� � �E2vEr . �17�

Here E2�����2, and vEr is the radial component of the
E�B drift velocity. For simplicity, the averaging is calcu-
lated over the ions on the flux surface. Figure 3�c� shows the
time integrated �E in the early nonlinear phase. Two flows

going into the qmin region are identified and marked in the
figure, implying turbulence spreading is a likely reason for
the mode gap being filled up. Figure 3�d� shows the time
evolution of ��2 at multiple radial positions. The r /a
=0.427 and 0.554 locations are the places where the net flow
is zero �E-field intensity flows from these points inward and
outward simultaneously�. The r /a=0.490 location is the
place where ��2 gets a minimum value in snapshot I. In the
late linear phase, the growth rates of ��2 at r /a=0.427 and
0.554 decrease while the one at r /a=0.490 increases, which
confirms that the field energy flows into the qmin region and
fills up the potential gap.

2. Fluctuations and structures near qmin

Various quantities during saturation are investigated to
study the turbulence structures near the qmin surface. We
focus on the three snapshots in the early nonlinear
stage mentioned above. The perturbed temperature gradient
�r�Ti, where �Ti��
�1 /2�mv2�f id

3v, the zonal electric
field Er�−�r��, and the ion heat conductivity �i

��
vEr�1 /2�mv2�fd3v / ��Ti� in the snapshots are shown in
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FIG. 4. Perturbed ITG ��r�Ti�, zonal electric field �Er�, and ion heat conductivity ��i� radial profiles of the ITG turbulence snapshots.
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Fig. 4. The amplitudes of the perturbed temperature gradient
and the zonal radial electric field increase a little as time
goes, but they are at a similar level over the radial space.
Note that the perturbed temperature gradient and the zonal
electric field are antiphase.34 In the qmin region, no peak or
gap was seen. The evolution of the ion heat conductivity
profile is similar to the ��2 profile. There is a gap near the
qmin surface in the linear phase. It is gradually filled up in the
nonlinear phase. After saturation, all quantities we studied
have similar amplitudes all over the radial domain, with no
clear structure seen in the qmin region. Therefore, no profile
corrugations are observed in our global simulations.

IV. CTEM TURBULENCE

Magnetic mirrors are made in the bad curvature region
of the torus by the spiral shape of the magnetic field lines
and the nonuniformity of the field in the poloidal direction.
Charged particles can be trapped in these mirrors and drift in

the toroidal direction. Such toroidal precession can resonate
with the electron drift wave and drive an instability called
the CTEM instability.1 The mode amplitude grows exponen-
tially under the instability drive until nonlinear effects take
place and saturate the mode, which then becomes the CTEM
turbulence.

A fluid-kinetic hybrid electron model32,33 is utilized to
simulate the CTEM turbulence.35 We focus on a qmin=2,
c1=2 case. Parameters on the qmin surface are R0 /Ln=2.2 and
Te /Ti=1. Other parameters are rw=0.32, a /R0=0.358, and
a /
i=125. The ITG mode is suppressed by setting i=1. The
CTEM instability is excited with e=3.1.

A. Linear eigenmode

Similar to the ITG instability, the CTEM instability also
has an eigenmode in the linear stage. Figure 5�a� shows the
time history of the volume-averaged fluctuation intensity
��2V. Six snapshots are taken. The radial profiles of the ��2
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FIG. 5. �Color� Mode structures of the CTEM turbulence. �a� The time history of ��2V. Six snapshots are taken. �b� ��2 radial profiles of the first two
snapshots scaled to the same level showing the linear eigenmode. �c� Evolution of the ��2 in the nonlinear phase. �II�: scaled up� �d� The time history of the
��2 at various radial positions. �e� The � poloidal structure of the linear eigenmode. �f� The � poloidal structure in the late nonlinear phase. Zonal potential
is excluded in all plots.
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at snapshots I and II, which are both in the linear phase, are
scaled to the same level and shown in Fig. 5�b�. They have
roughly the same shape, indicating an eigenmode is formed.
Note that there is no turbulence spreading in the linear
phase. The � contour plot at snapshot II is presented in
Fig. 5�e�, showing the eigenmode’s poloidal structure. We
can see that the mode grows only in the positive-shear region
�r /a�0.5�. The negative-shear region is stabilized. This is
probably due to the precessional drift reversal of the trapped
electrons in the negative magnetic shear.

B. Nonlinear turbulence spreading

In the nonlinear phase, the turbulence is observed to
spread not only outward toward the boundary but also in-
ward into the negative-shear side �r /a�0.5�. Figure 5�c�
shows the ��2 radial profiles of the snapshots taken. The
snapshot II profile is scaled up so that the profile shape evo-
lution is clearly seen. From this figure or the � poloidal
structure of snapshot VI in Fig. 5�f�, we can see that there is
no special structure in the qmin region after saturation. The
turbulence spreading into the negative-shear region can also
be seen in Fig. 5�d�, which gives the time history of flux-

surface-averaged potential intensity ��2 at various radial lo-
cations. The mode at inner locations is stable at first. After
saturation in the positive-shear region �r /a=0.71 in this fig-
ure�, the fluctuation intensities ��2 at r /a=0.4, 0.3, and 0.2
start to grow one by one as turbulence propagates in. We
define the turbulence arriving time at a certain flux surface as
the time when ��2 at that flux surface passes 10−4.
The arriving times at r /a=0.2, 0.3, and 0.4 are 30.6, 26.4,
and 22.1 �unit: R0 /cs�, respectively. Considering that
a /R0=0.358 and the time unit is R0 /cs, doing a linear fit
gives the turbulence spreading speed vts=8.4�10−3cs.
Notice that electron diamagnetic drift speed is v�e=
scs /LTe

.
In our case Te=Ti, so 
s=
i. Note that a /
i=125
and R0 /LTe

=6.9, then we can write the turbulence spreading
speed in terms of electron’s diamagnetic drift speed: vts

=0.43v�e. This is close to various theoretical estimates.36,37

The structures of the perturbed temperature gradient, the
zonal electric field, and the heat conductivity profiles after
saturation are shown in Fig. 6. We can see that all these
quantities spread along with the turbulence into the negative-
shear region, leaving no significant structure around the qmin

surface.
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FIG. 6. Perturbed electron temperature gradient ��r�Te�, zonal electric field �Er�, and heat conductivity ��e and �i� radial profiles in the nonlinear snapshots
of the CTEM turbulence.
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V. SUMMARY AND CONCLUSIONS

Electrostatic drift wave turbulence in tokamak plasmas
with reversed magnetic shear is studied using global gyroki-
netic particle simulations. The linear eigenmode of the ITG
instability exhibits a mode gap around the minimum safety
factor �qmin� region, particularly when qmin is an integer, due
to the rarefaction of rational surfaces. The CTEM instability
is suppressed in the negative-shear region due to the reversal
of the toroidal precessional drift of trapped electrons. How-
ever, after nonlinear saturation, the ITG gap is filled up by
the turbulence spreading and the CTEM fluctuation propa-
gates into the stable negative-shear region. The steady state
turbulence occupies the whole volume without any identifi-
able gap or coherent structures of the heat conductivity, per-
turbed temperature, or zonal flows in the qmin location or the
reversed shear region. Our finding indicates that the electro-
static drift wave turbulence itself does not support either lin-
ear or nonlinear mechanism for the formation of internal
transport barriers in the reversed magnetic shear when qmin

crossing an integer. Other external mechanisms, such as
sheared flows generated by MHD activities, are worth pur-
suing as possible agents to suppress the electrostatic drift
wave turbulence and form the internal transport barriers
when qmin crossing an integer. Our results of nonlocal effects
also raise the issue of the validity of previous local simula-
tions finding the transport reduction due to the precessional
drift reversal of trapped electrons or the rarefaction of mode
rational surfaces in the reversed shear plasmas.
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