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ABSTRACT

This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by
accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful,
magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and
ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we
showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power
with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with
observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these
magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic
jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability
properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet
solution outside the collimated central column treated as an electric circuit. We justify our model in part by the
derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the
implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low
jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general
relativistic MHD simulations.

Key words: accretion, accretion disks – galaxies: active – galaxies: jets – magnetic fields – magnetohydrodynamics
(MHD) – stars: black holes

1. INTRODUCTION

This is the second in a series of papers building on Colgate
& Li (2004), in which it was hypothesized that ultrahigh-
energy cosmic rays ∼1020 eV (UHECRs) are created by an
accelerating ion current in powerful radio jet/lobes created by
active galactic nuclei (AGNs). In our first paper (Colgate et al.
2014, hereafter Paper I), we derived the magnetic fields
generated by an accretion disk dynamo, by analogy with a
Faraday disk. Here we show that jet ejection and propagation
are analogous to low-density jets created in the laboratory (e.g.,
Zhai et al. 2014). As in our treatment of accretion disks in
Paper I, we will not attempt to explain jets in detail, but instead
we hope to identify simple models capturing the key physics.

AGN jets are created when the accretion power stretches
field lines high above the disk. In our model, the disk ends and
the jet begins in a coronal region of the disk where density and
pressure due to accretion fall to a very low value (Bisnovatyi-
Kogan & Lovelace 2012). This line of reasoning has led us to
an essentially one-dimensional model of magnetic jets with
negligible density and pressure, similar to the so-called
magnetic tower model, as proposed by Lynden-Bell (1996)
and studied further in a series of papers (e.g., Li et al. 2001;
Lynden-Bell 2003, 2006; Uzdensky & MacFadyen 2006) and
numerically (e.g., Lovelace et al. 2002; Kato et al. 2004; Li
et al. 2006; Nakamura et al. 2006, 2007, 2008).

We have in mind the configuration of Figure 1, shown also
in Paper I, repeated here for convenience. This is a cross
section of magnetic flux surfaces leaving the disk and returning
at the “nose” at the top of the figure. Currents follow field lines

above the disk but cross the fields inside the disk to form closed
loops, as they would in a Faraday disk. In Figure 1, outgoing
jet power is concentrated in a central column, surrounded by an
extensive diffuse pinch with lower current density.
It is this theoretical separation of the jet/disk system into a

compact central column surrounded by a broad diffuse pinch
that is the main source of simplification in our model, made
concrete by defining the diffuse pinch zone as the region where
disk rotation is approximately Keplerian. In Paper I, we showed
that a Keplerian diffuse pinch necessarily terminates at a radius
r = a that turned out to be about 10 Schwarzchild radii, so the
dynamics is nonrelativistic in the diffuse pinch zone of the disk
as well as in the magnetic helix/jet it creates above the disk. As
a further simplification, we represented the relativistic central
column as an electric circuit, as in early models of quasars (e.g.,
Chapter 9 of Frank et al. 2002; Lovelace & Kronberg 2013).
Furthermore, coupling this diffuse pinch model to the central
column electric circuit turned out to determine the amount of
current I passing through the central column, as discussed
below.
To set the stage for presenting our magnetic helix/jet model,

in the remainder of this Introduction, we review the results in
Paper I in order to explain how our model of accretion disks in
Paper I provides boundary conditions that fix magnetic tower
solutions. Towers are described by the force-free condition,

j B Ec 0,1 Tq � �� with charge density σ (Frank et al. 2002).
Then the equation to be solved in the long straight section of
the jet is (in cylindrical coordinates {r, f, z} with height z
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While in Appendix C we will see that Er = Bf can kill the
magnetic “pinch” force in relativistic jets, here we consider
only the low-density, nonrelativistic diffuse pinch region at
r > a where pressure is negligible and Er is small. Then the
pinch force maintains collimation, allowing us also to set
Br = 0, giving a one-dimensional (1D) model of the jet valid
except near the “nose” at the top of Figure 1 or near the disk,
though in fact we find below that Br = 0 in the corona.

Even with Er = Br = 0, Equation (1) has two unknowns, Bz
and Bf. The main result in Paper I is a boundary condition
fixing the solution, one very different from the “freezing in” of
flux in the disk as assumed by Lynden-Bell (1996, 2003), Li
et al. (2001), and many other authors (see, e.g., Frank
et al. 2002). Our boundary condition comes from coupling of
the disk interior to its corona via the conservation of angular
momentum, given in Paper I (see Equation (5) in that paper),
written here as
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with accretion velocity vr, disk density ρ, Keperian rotation
frequency ΩK, and K.E. representing other terms from the
stress tensor and so on. In going from Equations (2a–b), we
have dropped all the terms in {...} and absorbed the effects of
disk viscosity ν into the term g. Furthermore, we can take the
limit g ≈ 1, using an ordering scheme in the diffuse pinch zone,
given by

rB HB v r 1, 3r z r K( ) ( )x 8 �

g rv v r a r1 1 , 4r r K
1 2( )( ) ( ) ( )Ox � x � 8

where H is the scale height of the corona above the disk
midplane. Here rB HBr z∣ ( )∣ is the ratio of the term in {...} on
the right-hand side (rhs) of Equation (2a) to the magnetic term
retained. That this ratio is small justifies dropping Br in
Equation (1) even at the corona, and this also eliminates the
centrifugal ejection of mass proposed in Blandford & Payne
(1982) (see discussion in Section 3.1). All approximations
giving Equations (3) and (4) are verified term by term in
Paper I, using the hyperresistive Ohm’s Law introduced in
Equation (10) below in order to calculate various ratios of v and
B in comparing terms in the angular momentum equation.
Using Equation (2b), setting g = 1 and integrating

0 < z < H, we obtain (Lovelace et al. 2009)

M rB B r a2 for , 5K z r H,( )˙ ( )8 � �G

where M dM dt r v H4 r˙ ∣ ∣Q S� x is the accretion rate with
black hole mass M, and GM rK

2 38 � is the Keplerian rotation
with Newtonian gravitational constant G. In Paper I, we found
an exact simultaneous solution to Equations (1) and (5) that is
well-approximated by first setting rBf constant in Equation (5)
to find Bz, then substituting this Bz into Equation (1) to find
corrections to Bf. We obtain

B r B aI r rI B r B a r

B r a

; ;

0, for , 6
a z a
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3 2( ) [ ( ) ( )] ( ) ( )
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where the magnitude Ba (same for Bf and Bz) is derived in
Section 6, and the coefficients in Equation (7) are chosen to
agree with the exact results at r = a and r .l d The quantity I
is the total current inside the central column (within radius a),
and I(r) includes the current from both the central column and
the diffuse pinch (up to r). The fraction of the circulating
current passing through the central column is determined to be
equal to 1/1.7∼ 60%.
Equation (6) will serve as the boundary condition for our jet

solution in Section 3, extrapolated beyond r = R0 where
Bz = 0, as discussed in Section 3.1. Physically, this boundary
condition is the unique consequence of electromagnetic
ejection of angular momentum on the rhs of Equation (5), to
be compared with the Poynting energy flux found by multi-
plying the rhs of Equation (5) by ΩK. How to get rid of angular
momentum is the classic problem of accretion theory (Frank
et al. 2002), first solved by postulating a large hydrodynamic
viscosity ν that recycles most of the angular momentum in the
classic accretion model of Shakura & Sunyaev (1973). In
Appendix A of Paper I, we found that taking v rr K∣ ∣8 to be

Figure 1. Left: a simplified sketch of an accretion disk ejecting a jet, overlaid
by a GS solution for the cross section of poloidal (Bz, Br) magnetic flux
surfaces, using the accretion disk boundary condition derived in the
Introduction. The axisymmetric calculation box is a cylinder of radius R and
height L. The jet current is concentrated in a central column of radius a
calculated in the text, surrounded by a diffuse pinch of radius R0 and an
extended outer region of radius R bounded by the return current. Note that
outgoing flux surfaces are straight, finally turning at the “nose.” Right: also
drawn are the poloidal flux function Ψ, the poloidal current jz, and the function

j Bz z∣ ∣M � depicted at z = L/2 midway up the column. The figure is a 2D
average, the dotted cone depicting the apparent shape of jets due to 3D effects
discussed in Section 5.
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small as in Equation (3) is consistent with a viscosity factor
rv 1r∣ ∣O � in the diffuse pinch zone of the accretion disk,

giving g ≈ 1 in Equation (4), giving then the maximum transfer
of accretion power to Poynting power. Additional evidence
showing consistency with v r 1r K∣ ∣8 � in the diffuse pinch is
given in Section 6. A previous study on accretion and outflow
from dissipationless disks is given in Bogovalov & Kelner
(2010) as well.

The remainder of the paper is organized as follows. In
Section 2 we justify using our unconventional nonrelativistic
magnetic tower model to describe the magnetic structures of
AGN jets. In Section 3 we first show why our straight 1D tower
model approximates two-dimensional (2D) jets, then use our
model to calculate the expansion velocity of the magnetic
helix/jet. In Sections 4 and 5 we examine jet stability to show
why unstable jets remain collimated, yet provide the power
illuminating the giant radio lobes by synchrotron radiation. In
Section 6 we calculate jet dimensions. In Section 7 we compare
predictions with observations and experiments. In Section 8 we
summarize results and compare our model with other models.
Appendix A justifies our quasi-static model of jet propagation.
Appendix B pins down the voltage in our circuit model.
Finally, Appendix C attempts to reconcile our model with
general relativistic MHD simulations.

Throughout the paper we will continue to use a cylindrical
coordinate system {r, f, z} in which the disk spins about a
fixed z axis with an angular frequency8 pointing along the ẑ�
direction in the inner region of the disk, giving positive Bf and
negative Bz in the same region. Units are in cgs, often
introducing c, the speed of light.

2. CAN A MAGNETIC TOWER MODEL EXPLAIN
AGN JETS?

As discussed in the Introduction, our jet is a magnetic tower
model in which magnetic forces collimate the jet, as in
Figure 1. A principal feature of this model is its central column
with constant radius a. We acknowledge that our claim that the
axisymmetrically averaged current channel maintains a con-
stant radius, as it would if only magnetic forces are present, is
contrary to many previous jet models, including relativistic
models in which the electric force spoils magnetic collimation
when the flow speed approaches the speed of light. Motivated
by the observed superluminal motions of features within AGN
jets (e.g., Wardle et al. 1994; Zensus et al. 1995; Lister et al.
2013; Homan et al. 2015), it is generally thought that AGN jets
(as bulk plasmas) can be quite relativistic if the superluminal
features are interpreted as real plasma motion. One primary
goal of many previous 2D axisymmetric relativistic MHD
studies has focused on how to start the jets in a Poynting-flux-
dominated regime and gradually convert the jet into a kinetic-
energy-dominated regime, while at the same time achieving
both collimation and jet acceleration (e.g., Chiueh et al. 1991;
Li et al. 1992; Appl & Camenzind 1993; Eichler 1993;
Bogovalov 1995; Vlahakis & Königl 2003; Beskin &
Nokhrina 2006; Komissarov et al. 2007, 2009; Narayan et al.
2007; Tchekhovskoy et al. 2008; Lyubarsky 2009;
Beskin 2010). One important question that is still under intense
study is the stability of such jet structures, especially the role of
current-driven kink instabilities (e.g., Appl & Camenzind 1992;
Istomin & Pariev 1996; Lyubarsky 1999; Mizuno et al. 2007;
McKinney & Blandford 2009; Narayan et al. 2009; ONeill
et al. 2012; Bromberg & Tchekhovskoy 2015; Porth &

Komissarov 2015). In these studies, detailed knowledge of
the poloidal flux Bz is often needed in order to examine the jet
stability, although the origin and distribution of Bz are not well
constrained. Recent reviews on jet instabilities can be found in
Hardee (2011) and Perucho (2012).
While these relativistic MHD studies have certainly

improved our understanding of jets, many important questions
remain. A critical assumption in many models is the existence
of a large-scale global poloidal magnetic flux that is often
assumed to be nonzero (i.e., having a net flux in the domain of
interest) and threading through the disk and the black hole. By
contrast, tower models like ours start with zero net global
magnetic flux, as proposed by Lynden-Bell (1996) and studied
further in a series of papers as cited earlier. Recently, the
dynamic evolution of a magnetic tower jet in the three-
dimensional (3D) relativistic limit is studied in Guan et al.
(2014), where it was shown that such jets can continue
propagating without suffering catastrophic destruction even
though the current-driven kink instabilities (and possibly
Kelvin–Helmholtz instability) are quite visible.
In the context of the magnetic tower model, we have

proposed an alternative view of AGN jets as described in
Paper I. This model presents several key features that are
significantly different from the more traditional views: (1) the
large-scale poloidal flux threading the disk is produced by an
accretion disk dynamo with closed flux surfaces, as in Figure 1;
(2) the existence of this dynamo-sustained field leads to the
removal of disk angular momentum and establishment of a
cylindrical, helical magnetic structure; (3) the plasma mass
density and kinetic energy density are much less than the
magnetic energy density inside this structure; (4) this structure
maintains quasi-magnetic equilibrium as the overall structure
expands axially and radially at a rate that is nonrelativistic, in
part due to inductance and in part due to shocks in the ambient,
as explained in Section 3.3; (5) the instability of the jet is
already determined by the diffuse pinch at r > 10Rs, where the
dynamics is nonrelativistic; and (6) as in early models of
quasars (Frank et al. 2002), the central column inside the
diffuse pinch can be represented by an electric circuit with
current and voltage determined by the diffuse pinch zone of the
accretion disk.
Here we suggest further that the observed superluminal

motions are not necessarily due to bulk plasma motion, but
instead they could be “features” or “perturbations” that
propagate superluminally. In fact, observations by the Mon-
itoring Of Jets in Active galactic nuclei with VBLA
Experiments (MOJAVE) project have deduced that, though
rare, a small percentage of sources showed inward apparent
motion (Lister et al. 2009). Furthermore, detailed studies of 15
and 43 GHz observations of M87 have revealed large
discrepancies in observed proper motions (e.g., Komissarov
et al. 2007; Walker et al. 2008; Nakamura & Asada 2013;
Asada et al. 2014). So, we believe that the remaining
uncertainties in directly relating the observed superluminal
features with bulk plasma motion leave room for alternative
interpretations. For our tower model alternative, we argue that
the central column of the magnetic structure will undergo 3D
MHD instabilities that produce wandering field lines that cause
some amount of dissipation along the central axis, leading to
the appearance of a cone with an opening angle as well as
superluminal features (see Figure 1 and discussions in
Section 5.2). Nonetheless, the majority of the jet energy is
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still stored in a quasi-2D axisymmetric component of the
magnetic fields.

Several previous studies in the literature support our claim that
AGN jets can be magnetically collimated. We note especially
Faraday rotation measurements and other magnetic signatures far
from black holes that can be interpreted as arising from the thin
wire-like current filaments of our model (e.g., Owen et al. 1989;
Kronberg et al. 2011; Lovelace & Kronberg 2013). Second, we
note evidence that radio lobes themselves are confined by large
current loops pushing against the ambient (Diehl et al. 2008,
discussed in Section 7). Third, we note that in Section 3.3 we can
show how the large magnetic inductance of our wire-like
structure slows down the jet propagation velocity, yielding dL/dt
≈ 0.01c, which provides a straightforward explanation of the
longest observed AGN jets. Fourth, in Section 5 we will explain
how our jets collimated in 2D can produce field lines wandering
in 3D that might account for the apparent shape of jets as
determined from synchrotron and other radiations. Fifth, in
Appendix A we justify the low jet densities, allowing us to
neglect kinetic effects in jets, these low densities arising from the
disk model of Paper I, which leads us to conclude that the most
likely mechanism ejecting ions against black hole gravity is an
electrostatic sheath (Lovelace 1976). Finally, as an ongoing
issue, in Appendices B and C we suggest that including the
effects of ion acceleration and shocks in the low intergalactic
density would slow down jets so that relativistic jets in idealized
simulations would become the nonrelativistic jets of our model
(Guan et al. 2014). With these justifications, in this paper we
simply ask what would be the consequences if jets do behave
like our nonrelativistic magnetically collimated model, thus
allowing us to draw on extensive knowledge from similar jets in
the laboratory.

3. JET PROPAGATION

We begin our discussion of how jets propagate by first
verifying that the straight 1D jet model described in the
Introduction is a good approximation to the actual 2D structure
in Figure 1. We do this using the MHD momentum equations
in the Grad–Shafranov (GS) form for the case of negligible
plasma density and pressure, as argued in Appendix A.

3.1. Grad–Shafranov Solution

The 2D version of Equation (1) is the well-known GS
equation (e.g., Shafranov 1957; Grad 1960), much employed in
astrophysics (e.g., Li et al. 2001; Beskin 2010), and in
relativistic form (e.g., Michel 1969; Okamoto 1974). The GS
equation is derived from the mean-field momentum equation by
expressing B A� � q in terms of the poloidal flux Ψ = rAf
and factoring out ∇Ψ to obtain

v t
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where Ip = rBf and Φ is the electrostatic potential giving Er in
Equation (1). We have added an unconventional time-
dependent term as an approximation to v tL( )S Hs s with
E cr t1( )x � s: sG , giving v E Bc B2( )� � q �G

Br t B1 2[( ) ˆ ]Gs: s q� = r t B2 2( )s: s �:� with ∇Ψ

factored out as in the equilibrium GS derivation; keeping the
Lorentz factor v c1L

2 1 2[ ( ) ]H x � � reminds us that vA is
relativistic in jets produced by accretion disks. We have also
omitted kinetic forces in jets that play an important role in
defining Mach numbers in some jet models (Beskin 2010),
while in Paper I, reviewed in the Introduction, we found that
disk rotation and accretion are the only kinetic effects of
importance.
Jet propagation is a competition between the jet propagation

at Alfvén velocities, approximated by Equation (8), and the
available power. In Section 3.3, we show why propagation of
an AGN jet of growing length L is always power limited,
yielding dL dt v .A� In Appendices B and C, we show that
the electric field becomes small compared to the magnetic field
except very near the black hole. This allows us to drop ∂Φ/∂Ψ
in Equation (8). Also we use v r tA ( )s s� to justify dropping

v t1 A
2 2 2( )s : s in order to calculate the magnetic field as a

succession of equilibria inside a prescribed volume if that
volume were known.
That the volume can be approximated as a cylinder with

slowly increasing length L also follows for the large value of
vA ≈ c in jets, as shown in Appendix A. The large Alfvén
velocity compared to dL/dt gives plenty of time for magnetic
forces to flatten the nose in the radial direction as the length
changes slowly in the z direction. This is clearly seen in the
blunt-nosed shape of the plasma in Figure 2, showing an MHD
simulation of spheromak formation (see also Section 3.2). It is
this argument for a persistent blunt-nosed shape that allows us
to calculate jets as equilibria inside the cylindrical shape in
Figure 1. We approximate the radius R of radio lobes as a
constant, noting that R will turn out to appear only
logarithmically in our model, so a simple right-circular cylinder

Figure 2. Poloidal flux during helicity injection in the laboratory, from a
resistive MHD simulation (Hooper et al. 2012). All units are in meters. The
geometry is very similar to the SSPX experiment except that the height of the
electrically conducting flux conserver (heavy lines) has been increased to 2.
The coaxial gun located at Z = −0.8 injects toroidal flux. The current
generating that flux pinches around the geometric axis (dotted line at R = 0),
with the return current at the flux-conserver radius at R = 0.5. The initial
poloidal flux lines are generated by magnetic coils inside the gun at R < 0.3,
and these flux lines have been stretched upward. At the time of this “snapshot,”
the injected flux has not yet expanded sufficiently to fill the flux conserver, but
it shows both the collimation along Z and the “blunt nose” feature at Z ∼ 1.
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suffices, even for jets distorted in shape by external forces but
gently compared to the tiny radius of the central column (see,
e.g., Begelman et al. 1984).

With this justification, we have calculated the flux surfaces
in Figure 1 using Equation (8), dropping terms in {...} and
taking Equation (6) as a constraint at the disk surface. Note that
outgoing flux surfaces at r < R0 are straight, a consequence of
the term z B zr

2 2s : s r s s in Equation (8) that tends to
eliminate Br in the jet even if Br were finite at the disk. Here, R0
is the O-point radius where Bz reverses sign.

The flux surfaces plotted in Figure 1 were calculated using a
code called Corsica, which is a GS solver originally developed
to understand spheromak magnetic fields like the snapshot in
Figure 2 (Hooper et al. 1999). The plasma pressure p was
assumed to be small. In Corsica, to apply the boundary
condition, we must rewrite the coronal fields in Equations (6)
and (7) in terms of the poloidal flux Ψ(r, z) and a quantity
λ(r, z), defined at the disk by

r c j B B r rB r, 0 4 , 9z z z
1 1( )( ) ( )( ) ( ) ( )M Q� � s sG

� �

where on the far rhs we write the current density as
j c r rB r4 .z

1( ) ( )Q� s sG
�

We obtain λ as a function of Ψ by applying Equation (6) at
the disk surface, extrapolated inside the closed flux as in
Figure 1(b). Given λ(Ψ), the code solves for Ψ(r, z) inside the
volume, up to an undetermined magnitude. Otherwise,
solutions are uniquely determined by the boundary condition,
given by Ψ = 0 along the boundary except at the disk surface,

where r rdrB, 0
r

z
0

( ) ˆ ˆ¨: � with Bz in Equation (6) at

a < r < R0 where this formula applies, then extrapolated in
a reasonable way to give a roughly constant Bz at r < a, as
discussed in Appendix B, and a peak in Ψ at r = R0 and Ψ = 0
at r = R. To produce Figure 1(a), our Ψ(r, z) compresses the
main features of the disk field onto computer grid dimensions,
giving the profiles of Ψ, λ, and jz shown in Figure 1(b). The
quantities shown are those halfway up the jet length so as to
include the region of closed flux inside the radio lobe, as
mentioned above. Since outgoing flux rises vertically (except at
the nose), these profiles are also those at the disk, out to the
O-point radius R0 where Bz reverses sign.

The physical argument for large Alfvén velocity can also be
seen as follows. It concerns how current is ejected from the
accretion disk. Briefly, the disk and jet constitute a single system
linked by the magnetic field, much like a Faraday disk that could
launch jets in the laboratory as plasma guns do (Fowler 2004).
For a Faraday disk, a natural separation occurs at the disk surface
where metallic forces cease to provide rigidity, and the
continuity of current causes an electrostatic sheath to form so
as to eject ions into the jet (the disk is an anode for our sign
convention). For accretion disks, also, the cessation of accretion
at a height H above the disk serves to separate the disk and jet.
The conductivity of the metallic disk is replaced by hyperresis-
tivity v BD c 1

1 1� � q� due to disk fluctuations v1 and B1,
giving as a generalized Ohm’s Law (Boozer 1986)

E v Bc D. 101 ( )� q ��

The buildup of radial current needed to complete the current
loops in Figure 1 is given by Dr inside the disk, given by
Faraday’s Law j c t B v z4 r z r

2 2( )Qs s x s s using cDr x
cD v Br z� xG from Paper I. Thus, the radial current flow jr

inside the disk is intimately tied to accretion vr in the disk, both
being driven by the same 3D fluctuations inside the disk.
Aside from this different Ohm’s Law, accretion disks and

Faraday-disk plasma guns share the same requirement to
produce a sheath in order to provide particles to carry the
current. The density of ejected ions is just that needed to carry
the current, perhaps augmented by extra gas beyond the sheath,
but altogether yielding a large Alfvén velocity in both the
Sustained Spheromak Physics Experiment (SSPX) and jets
from accretion disks. The sheath in a gravitational field is
discussed in Appendix A.2. Finally, we note that the
combination of low jet density and very fast Alfvén velocity
in the diffuse pinch avoids bulk flows across critical surfaces
encountered in traditional MHD jet models, as well as the light
cylinder (see a recent review by Spruit 2010, p. 23).

3.2. Jet Dynamics

As already noted, jet propagation is a competition between
momentum equations trying to propagate the jet at Alfvén
velocities (vA), versus Faraday’s Law yielding jet power as a
Poynting vector that may or may not be able to supply power at
the Alfvén rate. At the very low jet densities we have in mind
(justified in Appendix A), jet propagation is always power
limited, even when Alfvén velocities approach the speed of
light. (In this sense, the often-observed superluminal signatures
could best be interpreted as the phase speed of disturbances
traveling along the jet.) Then speed c never really enters the
mathematics. This situation is quite similar to the regime of
some laboratory plasma experiments where the Alfvén speed is
often orders of magnitude larger than the flow speed. For
example, a spheromak formation experiment involves injecting
magnetic fields with finite helicity into a metallic tank called a
flux conserver, which we regard as similar to astrophysical jets
where twisted magnetic fields are “ejected” into a dilute
background. Figure 2 shows a nonrelativistic MHD representa-
tion of magnetic flux surfaces as fitted to measurements in the
SSPX spheromak experiment (Hudson et al. 2008; Hooper
et al. 2012). This is a snapshot during the early stage of gun
injection into a flux conserver, before reconnection events relax
the flux into a spheromak. It turns out that vA is ∼100dL/dt in
this experiment, similar to the jet regime derived in Section 3.3.
Furthermore, because v dL dtA � (where dL/dt is approxi-

mately the axial jet speed), the jet remains causally connected
to the disk by MHD waves, even as L grows to megaparsec
dimensions. As L grows, the field inside is roughly constant in
time in the observer’s reference frame, except near the nose,
thus allowing us to picture jet dynamics as a sequence of
equilibria inside an ever-lengthening cylinder. Then the
accretion disk voltage V driving the expansion mainly
reappears at the nose, with little voltage drop extracting power
from the central column. It is this tiny voltage drop ΔV ≈
0.01V along the column that will account for the low
luminosity in the synchrotron and other jet radiations that are
the main jet observables (about 1%, Krolik 1999), while most
of the action is at the nose, where we will claim UHE cosmic
rays are created. This dominance of the nose is another
important feature that distinguishes our model from those
postulating a significant transfer of magnetic energy to kinetic
energy along the way. We will find that even the small power
in IΔV is exhausted as radiation, not transferred to bulk kinetic
energies.
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In short, in our model, the central column mainly serves as a
causally connected conduit of power from the accretion disk to
a cosmic-ray accelerator at the nose of the evolving jet. The
main content of this paper is to show how a tower-like jet can
maintain collimation, given the known tendency of currents to
be violently unstable. We discuss the macroscopic stability of
steady-state parameters in Section 3.3, and stability against
small perturbations in Sections 4 and 5. Finally, we must
reconcile our straight magnetic jet structure with the very
different conical picture presented by observations of radiation,
discussed briefly in Section 5.2 and more fully in a subsequent
paper.

3.3. Calculation of Jet Velocity

In this subsection, we will focus on deriving the jet velocity
dL/dt, yielding the jet lengths discussed in Section 6. For this
purpose, the large Alfvén velocity giving the rigidity of the GS
solution in Section 3.1 allows us to extend the circuit model to
the entire jet structure simply by integrating the magnetic
energy density inside this structure, without regard to the fact
that the circuit model of the central column itself is an
approximation to relativistic physics near the black hole (Frank
et al. 2002, Chapter 9; see also Appendices B and C).

Then, for the blunt-nosed model in Figure 1, applicable in
the fast Alfvén regime v dL dtA � and valid for radio-loud
AGN jets as discussed in Appendix A, the length L(r) from the
disk to the nose at radius r can be taken to be independent of r.
We will assume the fast Alfvén regime to derive dL/dt for jets
from energy conservation, giving

f P F P1 1 , 11conv jet shock mag( ) ( ) ( )� � �

xP d dt d B 8 , 12mag
2( ) ( )¨ Q� ⎡⎣⎢ ⎤⎦⎥

where Pjet is the jet power. Thus the power Pjet is partly
consumed as magnetic energy, partly as the conversion of
magnetic energy into kinetic energy with an efficiency fconv
through whatever processes, and partly as power in shock
waves at the nose, where Fshock = Pshock/Pmag.

As it turns out, the jet power Pjet = IV, where the current I is
the central column current, and the voltage V is the potential
difference between r = a and a distant radius R0� where the
current returns to the disk. Introducing the dominant compo-
nent, Bf = (2I/cr) in Equation (6), into B2/8π gives

xd B I8 1 2 , 132 2( ) ( ) ( )¨ Q � -

with the inductance Λ given by

L c R a L c R a2 1 ln 2 ln , 142 2( ) ( )[ ( )] ( ) ( )- � � x

where in carrying out the integral we assume the right-circular
cylindrical volume of Figure 1 with fixed radius R and length L
by the arguments in Section 3.1. As anticipated in Lynden-Bell
(2003), the inductance in Equation (14) is mainly that for a
quasi-vacuum field due to the central column current filling the
diffuse pinch region and radio lobe, though the actual creation
of this B field is due to the disk boundary condition, as
discussed in Section 3.1. We will take R aln 20( ) x as
representative of the observed radio-lobe radii and the central
column radius a. This allows us, on the far rhs, to drop the

unity term representing inductance inside the central column
itself.
Note that, while Bf in the diffuse pinch dominates the

energy, Bz gives a poloidal flux in the diffuse pinch, generated
by the self-excited disk dynamo, that is much larger than the
flux through the central column (see Appendix B of Paper I for
details).
Our calculation of dL/dt will be further simplified by noting

that, after a jet is launched, the current I should hover stably at
the minimum current required to eject the jet (the equipartition
value, calculated in Section 6). See also Christodoulou et al.
(2008). It is sometimes called “bubble burst” in the spheromak
literature; see also Li et al. (2001). To see this, we introduce
Equations (13) and (14) into Equation (11), giving

f

F
IV

d
dt

I
c

L
R
a

R
a

I
c

L
cI

dI
dt c

dL
dt

1

1
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ln
2 1

. 15

conv

shock

2

2

( )
( )

( )

�

�
�

� �

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
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This equation is coupled to jet dynamics by Equation (8).
Equation (8) by itself would yield a large jet speed
dL dt v c.Ax l But in order to satisfy Equation (15), keeping
in mind that cV/I ≈ 1 and R aln 20,( ) x it will require dI/dt
at constant V to go negative. Then the current I will fall until it
goes below the minimum required for jet ejection. This would
eventually interrupt the current, which would soon be restarted,
altogether causing the central column current I to hover at
equipartition, confirmed by numerical solutions in Fowler et al.
(2009a). The same would hold if current were disrupted along
the jet, replenished by a “virtual anode” that would form at the
point of rupture. Thus we conclude that on time average I is
constant. Setting dI/dt ≈ 0 in Equation (15) gives

dL dt
c

f

F R a

1

1
1

ln
, 16conv

shock

( )
( ) ( )

( )x
�

�

where on the rhs we have approximated cV/I ≈ 1 to give dL/dt
� c for no shock and zero dissipation.
Next we estimate the shock heating contribution. By

the arguments above, the magnetic piston driving shocks
is a relatively rigid structure with maximum pushing
power Pmag in Equation (12). Because dL/dt will turn out to
exceed the ambient sound velocity, the Rankine–Hugoniot
equations predict that the magnetic piston produces a
strong shock in the ambient with back pressure pshock x

dL dt1 2 1 1 AMB
2( )[( ) ( )] ( )S( � ( � with adiabatic gas Γ

(Harris 1975), requiring a piston pushing power Pshock = dL/dt
(πR2pshock). Here we will take Pshock ≈ Pmag, to be justified by
jet numbers derived in Section 6. Then

F P P 1. 17shock shock mag ( )� x

We now substitute Fshock ≈ 1 into Equation (16), using
R aln 20( ) x , and anticipating results in future papers,

f1 1 2.conv( )� x We obtain

dL dt c0.01 . 18( )x

The observational implications of Equation (18) are discussed
in Section 6.
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We note that Equation (18) giving dL dt c� is quite
general, being equivalent to

x

x

dL dt f Mc d B E

f Mc d B B

1 4 8

1 4 8 , 19z

2

JET

2 2
1

2

JET

2 2
1

{ }
{ }( )

( )( ) ˙

( ) ˙ ( )

¨

¨

Q

Q

� �

� �G

�

�

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

where, if E and B are mean fields, the first inequality represents
the missing hyperresistivity and other dissipative processes,
applicable also to the GRMHD simulations discussed in
Appendix C.

4. JET STABILITY: LINEAR THEORY

As discussed in Section 2, we can anticipate that jets
carrying current are unstable, our main interest being the
nonlinear consequences of instability, to be discussed in
Section 5. Here we first characterize instabilities using well-
known linear theory. In this section we consider only the
diffuse pinch zone of our jet model, where magnetic mean
fields describing the equilibrium state are well-characterized in
Equation (6). We will extrapolate these results into the central
column in Section 5.

Pressure being negligible in our jet model, the instabilities of
interest are the kink modes occurring if twisting field lines in
three dimensions lower the inductance. For these modes, we
can establish the existence of instability in the diffuse pinch,
where the electric field E B� , using the nonrelativistic
Energy Principle as formulated for very long pinches with
periodic boundary conditions, even though the physical
boundary might fix fields in the disk (see also Huang
et al. 2006; Delzanno et al. 2007; Carey et al. 2011). Thus
we assume k m r k, z( )� for perturbations i texp { Xr � �
m r k z ;z( ) }G � we represent the current as λ from Equa-
tion (9). We first write the energy change δW in the diffuse
pinch in the form usually employed in ideal MHD theory,
giving

j B j B
W
L

rdrc a
2

20
a

R
1

1 1
v ( )· ( )¨ YE

Q
� q � q�

dr HF g b, 20
a

R

E
2 2 2

v { } ( )¨ Y Y� a �

where Y is a 3D displacement of a field line and (′) = d/dr. The
derivation of Equation (20b) is somewhat involved. We follow
Freidberg (2014), who followed Newcomb (1960), but with the
notation in Furth et al. (1973), giving, with k ≡ kz = (2π/L)n

H r k r m a, 213 2 2 2( ) ( )� �

k BF k B m r B

L B n m q b2 , 21
z z

z

· ( )
( ) ( ) ( )Q

� � �
� �

G
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2
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2
, 22

E

z

2 2 2 1 2 2 2 2

2 2 2 2 2

2

2 2 2
2 2 2 2

2 2

2 2 2
2 2 2

}(
{

{

( ) ( )
( )

( ) ( )

( )
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( )

� � � �

� � �

�
�

� � �

�
�

�

G

G

�

⎡⎣

⎫⎬⎭

q rB LB2 . 23z ( )( ) ( )Q� G

In order to treat “tearing” kink modes involving reconnection
of field lines, following Rosenbluth & Rutherford (1981) we
generalize the displacement ξ as

A rF . 24z1 ( ) ( )Y �

Substituting Equation (24) into Equation (20b) gives

k B
W

dr
r

rA A m
mrB

, 25
a

R

z z
z

1
2

1
2 2

v ( ) ( )
( · )

( )¨E M� a � � a
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎫
⎬
⎭

where λ is given in Equation (9). Other terms not important
here are given in Robinson (1978). Ideal modes with finite ξ are
recovered if A1z = 0 at magnetic resonances where
k B 0· � , but Equation (25) also includes tearing modes.
Since Equation (25) only involves Maxwell’s equations, it is
nonrelativistic only in that the electric force E E4( · )Q� is
not perturbed, valid in the diffuse pinch where E B.� We will
deal with E in the central column in Section 5.
We search for instability by introducing appropriate trial

functions for A1z into δW. An unstable mode is indicated if
δW < 0. The key is to pay close attention to resonances in
choosing trial functions. Resonances occur if q in Equation (23)
is a rational number.
We first consider tearing modes, for which δW in

Equation (25) can be simplified as follows. Following Hegna
& Callen (1994), applied also in Fowler et al. (2009b), we
expand k B· around the resonance at r = r0 using
Equation (21b). We obtain

q n m q r r a1 1 ..., 260( ) ( ) ( )� � a � �

k B L B n m q

L B m q r r b

2

2 1 , 26
z

z 0

· ( ) ( )
( ) ( ) ( ) ( )
Q
Q

� �
x a �

r rB r B a a r c1 2 , 26z
1 3 2( )( ) ( )( ) ( )M � s s �G

� ⎡⎣ ⎤⎦
q L ar d1 2 . 261 2( ) ( ) ( )Q�

Substituting Equation (26b) into Equation (25) with
r r r0( )� x over most of the domain of interest, we obtain

W
dr
r

rA A m
q

L
1 2

. 27
a

R

z z1
2

1
2 2

v ( ) ( )
( )¨E
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Q

� a � �
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⎫⎬⎭
Then δW is certain to be negative, indicating instability if we
choose A1z to minimize the effect of A z1a and we require

q
L

a r m
1 2

3 2 1. 282

( )
( )( ) ( )M

Q
a
a

� � �

This means that the tearing instability occurs, but only at
r/a < 3/2 in the neighborhood of the central column and only
if m = 1.
Next we consider ideal modes by choosing A1z to give ξ in

Equation (24) that is constant so as to eliminate the positive
contribution of ξ′ in δW as written in Equation (20b). This δW
is the change in energy where ξ(r) is concentrated, inside a
radial zone r � Rv containing the jet. There is some ambiguity
in deciding Rv, to which we return at the end of this section.
Roughly, one can take Rv = R0, the O-point radius that defines
the edge of the diffuse pinch zone. Let r < R1 � Rv be the
volume of interest. Then for R1 in the jet interior, eliminating
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the ξ′ term in δW requires terminating ξ at a resonance over a
small width Δ. Then for the first term in Equation (20b), we
obtain a contribution only around the resonance where ξ′ ≈
ξ/Δ, and we can expand F = ΔF′, giving

drHF H F 0. 29
a

R
2 2 2

1 ∣ ( ) ∣ ( )¨ Y Ya x % % a % r % l

By Equation (20b), instability is determined by integrating
gE over the range r � R1 where the field line displacement ξ is
nonzero, with q(R1) = m/n at the resonance. Instability

requires drg 0.
R

E
0

1

¨ � Near resonance, q m n 1( )( )�� �

gives nq m m n2 2 2( ) ( )�� � , while n q m2 2 2( )� � m n2 ,2( )�
which always leads to gE < 0 for ò sufficiently small. But this

makes only a small contribution to drg
R

E
0

1

¨ , so to a good

approximation we can take nq m.� With this approximation,
Equation (22) gives gE ∝ m k r12 2 2( )� � k r2 2 2�
k r m ,2 2 2( )� which is positive for all kr if m � 2. Thus
instability requires m = 1. For m = 1, we can obtain
g rB k N r ,E

2 2 ( )� � G where N r k r k r1 1 .2 2 2 2 2( ) ( ) ( )� � �
When kr < 1, we get N(r) > 0 but gE < 0. Negative gE
gives negative δWP, which leads to instability. Expanding N(r)
in powers of k2r2and using also Bf in Equation (6), we obtain
for the diffuse pinch free energy

W
L

drg

B k a R a k R a

2

ln 3 2 , 30
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E

a a

2
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1

2
1
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1
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E
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Y

x
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where ξ = ξa is taken as constant for the reasons given above.
The maximum W∣ ∣E gives the greatest growth rate. It can be
found by maximizing on k at fixed R1. This yields, by
Equation (30)

k a R a R a aln 3 1 , 312 2
1 1

2{ }( ) ( ) ( )� �⎡⎣ ⎤⎦
W
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B R a R a
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2
ln 6 1 internal .
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a a
2 2 2

1 1
2 2{ }( )( ) ( )
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E
Q

Y� � �⎡⎣ ⎤⎦

Maximizing δW on R1 gives R1/a ≈ 2.2, which leads to ka ≈
0.26. Thus, as for tearing modes, we find that ideal trial
functions confined to the interior of the jet only give instability
for ka ∼ O(1), indicating instability is localized to the
neighborhood of the central column. That is, this class of kink
modes is localized, meaning that it does not destroy collimation
of the jet.

We will refer to these localized modes as internal kinks. That
ideal internal modes are localized in this way has been further
verified by numerical calculations of δW for a force-free
equilibrium with B B r a1 ,z a

3 2[ ( ) ]x � mentioned in
Appendix B as a way to extend the diffuse pinch solution in
Equations (6) and (7) into the central column. This result
obtained from δW has been further verified by direct ideal
MHD mode analysis for this equilibrium, using the nonlinear
Gyrokinetic Toroidal Code (GTC; Deng et al. 2012; McCle-
naghan 2015) but dropping nonlinear terms. Linearized GTC
results are shown in Figure 3. Figure 3 (left) shows that the
growth rate γ is maximum near kza = 1, as expected. Figure 3
(right) shows that the electric potential perturbation δf is
maximum near r = a, again as expected.

By extending R Rv1 l as defined in Equation (20b), we can
also apply Equation (30) to modes with very long wavelengths
such that k is small enough to avoid all resonances, giving for k
giving N(r) ≈ 1

W
L

k a B R a
2

ln external . 32a a v
2 2 2 2 ( ) ( ) ( )E

Q
Y� �

We will call these long wavelength modes “external” modes to
distinguish them from the “internal” modes to which
Equation (31b) applies.
There is some ambiguity in choosing Rv. First, sufficient

plasma may exist everywhere inside the return-current
boundary in Figure 1 so that all of this volume is part of δW.
Second, the contribution of distant resonances to δW where Bf
is small is so weak that, at some large r, we can let ξ begin to
fall off gently enough that HF2 2Ya makes a negligible
contribution to δW, thus allowing us to terminate ξ inside Rv
so that there is no contribution from outside. Finally, even if we
treat r > Rv as a literal vacuum, it turns out that the vacuum
response, given in Freidberg (2014) as W L k rB2E R

2
v

( ) ( )E Y� ≈
k aBa a

2( )Y for an infinitely distant outer wall, though stabilizing,
still gives instability due to the large logarithmic factor above.
Noting that all jet power is ejected at r < R0, the O-point
radius, for practical purposes, we will choose Rv = R0, giving
kR0 � 1 as the range of wavenumbers for unstable external
modes.

5. JET TURBULENCE: NONLINEAR DEVELOPMENT

The most important result in Section 4 is our finding that
current-driven instability in our AGN jet model cleanly divides
into “internal” short-wavelength modes with kza ≈ 1 confined
to the neighborhood of the central column in Figure 1, and very
long wavelength “external” modes with kzR0 < 1 correspond-
ing to a rigid displacement of the entire jet structure. This
division of kink modes into internal and external modes is also
consistent with the previous nonrelativistic magnetic tower jet
simulations (Nakamura et al. 2007, 2008) and with the recent
relativistic simulations (Bromberg & Tchekhovskoy 2015).
Here the importance of this finding lies in the fact that it will
turn out that the short-wavelength internal modes can accelerate
cosmic ray ions without destroying the jet, while the long-
wavelength external modes provide the power emitted as
synchrotron radiation by which jets are observed.
Evaluating the importance of instabilities discussed in

Section 4 requires estimating their nonlinear effects as
amplitudes grow, either steadily for slowly growing modes,
or to a point of saturation for fast modes. In the spirit of this
paper, we will uncover some important nonlinear effects not
yet adequately explored in simulations that we hope will serve
as a guide to future work.

5.1. Nonlinear Development of Internal Kink Modes

As noted above, at saturation, internal kink modes accelerate
ions while preserving the integrity of the jet. Concerning jet
integrity, internal kink modes only disturb the jet current near
the central column, while external modes have such long
wavelengths that they only develop over the observed length of
jets (see Section 5.2). Concerning particle acceleration, while
the electric field parallel to B is strictly zero in ideal 3D MHD,
correlations in perturbations E1 and B1 can produce, even
for ideal kinks, a nonzero value for the electric field
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E E B BB1 1( )� �� q q §& & averaged over f. It is this EP that
accounts for ion acceleration in the Spheromax Experiment
(SPHEX) (Rusbridge et al. 1997), discussed in Section 7.

Pending further progress on general relativistic MHD codes
discussed in Section 8 and Appendices B and C, the nonlinear
transport rates discussed in this section must rely on simple
estimates. Here we follow the fully nonlinear free-energy
method of estimation corresponding to δW in linearized MHD
theory but also applicable to all processes included in the
Vlasov equation (see, e.g., Fowler 1968, p. 201). Using this
method, we can determine upper limits on the nonlinear effect
of internal kink modes as follows.

We assume that internal kinks develop in a fixed radial
domain 0 < r < R1 for some R R ,1 0� justified by the fact that
internal kinks are either localized near a magnetic resonance
(tearing) or terminate there (ideal modes). We can then set
rigorous limits on the radial extent of mode activity, indicating
that internal mode turbulence does not destroy collimation.

As for the linear stability analysis in Section 4, we can
describe the radial extent of turbulence using either a line
displacement ξ (as in MHD theory) or a field perturbation, the
two being related by Rosenbluth & Rutherford (1981):

k B
A

r
r

B
B

, 33z r1 1

·
( )Y � x

G

⎛
⎝⎜

⎞
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where on the far rhs we use B1r = (m/r)A1z and, to explore
displacements away from exact resonance, we approximate
k B mB r B r· ( )x �G G for the dominant field component
and the dominant instability mode m = 1. Following Fowler
(1968, p. 201), we can set upper limits on B1r/Bf by bounding
the free energy available by relaxation at constant entropy,
which, for MHD, is the global magnetic helicity

xA BK d ,·¨� giving B BM� q � with constant λ0 as
the relaxed state of minimum energy (Taylor 1986). For the
relaxed state, B A AM� � q � gives λK/8π as the relaxed
energy. At constant helicity, K is also that in equilibrium,
yielding the free energy ΔE given by

B B A
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L rdr a
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Here B and A are the equilibrium fields in Equation (6) with
dominant components Bf ≈ Ba(a/r) and A aB a r2 a

1 2( )�G
chosen to give Bz in Equation (6). Substituting these dominant
field components into Equation (34a) gives Equation (34b),
using also λ0a ≈ 2 derived as follows. To the lowest
order, the relaxed Bf = Bz(0)(λr/2), giving B R1( ) �G

B R0 2z 1( )( )M = B a Ra 1( ) (since fields are not disturbed there),
from which R a2 2 11M Mx x is the ratio of equilibrium and
relaxed poloidal fluxes, which are equal since Af is not
perturbed at the boundary either.
The free energy in Equation (34b) becomes negative

(stability) for R1/a much above unity, while E% x
LR B1 4 1

2
1
2( ) = La B1 4 a

2 2( ) for R1 = a, with corresponding
excursion a B B a.r1( )Y � xG This estimate is consistent with
the speculative magnetic field profiles at r < a in Appendix B,
and the corresponding electric field energy is at most
comparable to the magnetic energy. Then, for internal modes,
ξ � a is confined to the active zone R1 ≈ a. Note that for
internal modes within a fixed resonance at r = R1, ΔE above is
a nonlinear limit on the quasi-linear δWP in Equation (30),
giving similar results for k−1 ≈ ξ ≈ a. Nonlinear 3D relativistic
MHD simulations of magnetically driven jets show relatively
short wavelength kink modes in the central region along the jet
axis, consistent with the analysis here (Guan et al. 2014).

5.2. Nonlinear Development of External Kinks: Wandering
Field Lines

External modes with much longer wavelengths persist by
perturbing the boundary outside all resonances. Nonlinear 3D
nonrelativistic MHD simulations of jet+lobe systems on the
largest scale (e.g., jet+lobe sources in galaxy clusters as
described in Li et al. 2006) have produced morphologies that
are consistent with this expectation (e.g., Nakamura
et al. 2006, 2007, 2008). In this section, as noted earlier, we
are mainly interested in external kinks as conduits of power
observed as synchrotron radiation. Since the disk Poynting
power r B B rz

3r 8 rG
� by Equation (6) with Keplerian

rotation, most of the power emerges at r < a, suggesting that

Figure 3. Results of linearized simulations of internal kink modes. Left: the growth rates are plotted for modes of different normalized axial wave number kza, where a
is the central column radius. Right: the mode structure of the electrostatic potential δf with kza = 0.9 plotted versus radius r. The peak occurs near r = a.
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we concentrate on the wandering of field lines emanating from
this region of the disk corona. This is our example of a
nonlinear effect not yet properly modeled in MHD codes, and
not in GRMHD codes either since they do not include the
acceleration of ions that we find to be the crucial point. This is
also an example of a conceptually clear phenomenon that
nonetheless is beyond simple calculation. Thus we resort to a
heuristic model of wandering field lines.

Since the wandering of field lines is a dynamic process, we
can no longer consider only energy changes but must also
consider growth rates along the jet. As for internal modes, we
can use as the measure of line wandering the field line
displacement in Equation (33). In nonrelativistic theory,
initially ξ grows as dξ/dt = ωξ. The initial growth rate is
order ω ≈ kvA (Alfvén velocity) according to theoretical results
in Cohen et al. (2009) calibrated to the SSPX experiment
mentioned in Section 3.2. For jets with an extended diffuse
pinch, X = xW d 2 1 2( )¨E SY ≈ R a k vln .z0

1 2
A[ ( )]

Rutherford (1973) showed that the linearized exponential
growth of kink modes ceases as soon as the nonlinear island
width exceeds the linearly calculated resonance width, after
which growth is secular ∝t. Here we will show that external
mode growth saturates by a different process, again yielding
secular growth. The reason concerns the acceleration of ions
parallel to B and how this affects the Alfvén velocity. As we
noted in the Introduction, this acceleration ultimately yielding
UHE cosmic rays is a kinetic process not included in relativistic
MHD simulations and not readily calculated analytically,
forcing us to resort to rough approximations. Why the growth
becomes secular due to relativity can be seen as follows. We
assume ω ∝ vA as in linear theory, giving

d dt . 350 L
1 2

0( ) ( )Y XY H H X Y� �

Here ω0 is the Alfvénic growth rate with Lorentz factor
v c10

2 2 1 2( )H � � � , where v is the average velocity of ions
accelerated along wandering field lines, while γL includes the
randomly directed ωξ, giving v v .2 2 2( ) ( )XY XY� � � We
obtain

v c

a

1

1 , 36

L
2 2 2 1 2

0 0 L
1 2

( )( )
( ) ( )

H XY

H D H H

� � �

� �

�⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

c b. 360 0
2( ) ( )D H X Y�

where on the far rhs of Equation (36a) we use

0 L
1 2

0( )X H H X� as in Equation (35). Equation (36a) is a
quadratic equation in γ0/γL. Solving for it gives

1 2 40 L
2 1 2[ ( ) ]H H D D� � � � , and substituting this into

Equation (35) gives

d dt a, 1 370 ( )Y X Y D� �
b, 1. 370

1 2 ( )X Y D D� �

Thus the secular growth sets in when exponential growth gives
χ > 1. This happens early in the jet evolution, giving after an
elapsed time t

c t. 380( ) ( )Y Hx

We interpret Equation (38) as follows. As noted above, most
of the power flow along wandering field lines enters the tangled
field near r = a and only wanders radially as ξ grows along z.
The dotted cone in Figure 1 bounds the path of these wandering

lines, with an opening angle Θ given by

z z c t z 100 , 390 0( ) ( ) ( )Y H H2 x � �

where we take t to be the elapsed time required for the jet to
extend to a height z, giving t = z/(dL/dt) = 100z/c by
Equation (18).

6. PREDICTED DIMENSIONS OF THE JET MAGNETIC
STRUCTURE

We start this section with a review of needed jet parameter
values derived from our circuit model for the central column
using results from Paper I, summarized as follows. We describe
the central column by the power it carries, given in terms of the
central column current I and voltage V by

IV f Mc 4 , 402( )˙ ( )�

where f is the efficiency for converting gravitational power into
Poynting power. In this, we follow many authors (e.g., see the
review by Beskin 2010 and a textbook summary of applications
to pulsars in Frank et al. 2002, Chapter 9). The main difference
in our work is how we couple Equation (40) to the Poynting
vector to find also the central column radius a, rotation
frequency Ωa, and field Ba, whereby our separation into a
diffuse pinch zone and the central column pins down numbers
left uncertain in previous work. We do this by finding
simultaneous solutions of Equation (40) with Equation (5)
and by considering the fact that Bz(a) = Bf(a) = Ba for the
exact calculation of diffuse pinch fields in Paper I. We obtain
the following parameters:

a c R a f b2 0.2, 41a s
1 2 1 2( ) ( ) ( )8 � � x

a b f R R M2 10 3 10 cm, 42s s
14

8( ) ( )� � � q

B M a M2 1.5 10 Gauss, 43a a
1 2 3

8
1 2( )˙ ( )� 8 x q �

I aB c M2 0.7 10 statamp, 44a
28

8
1 2( ) ( )� x q

V b a c aB I c M2 0.5 10 statvolt,

45

a a
18

8
1 2( ) ( )

( )
� 8 x x q

where M8 = M/(108MSun) and Rs = GM c2 32 x q
M10 cm;13

8 we have also taken M M˙ U� for a typical system
lifetime of τ = 108 yr (e.g., Colgate & Li 2004; Beskin 2010).
The current I is the central column current; V = bΦ(a) where Φ
(a) is the potential difference between r = a and a distant radius

R0� where the current returns to the disk. The coefficient b is
an average enhancement of Φ(r) over the central column.
This completes our model aside from the parameters f and b.

The numbers on the far rhs assume f = 1/4, derived in Paper I
as an extrapolation of the calculated efficiency on flux surfaces
in the diffuse pinch zone. The parameter b = V/Φ(a), taken
as 5, is more uncertain, but V b a c aBa a( )� 8 r
b b b1 2 1 4( )( )� � = b1 4 is only weakly dependent on b. Of
greater concern is whether a quasi-steady solution actually
exists at r < a, given the fact that codes including the black
hole region do not yet obtain the straight collimated jets
predicted by our model, as discussed in Section 8. We discuss
this issue in Appendices B and C, with the conclusions that a
collimated jet can be consistent with black hole physics, and
b = 5 is a reasonable value.
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Note that these values also yield cV I fb2 11 2( )� x , as we
assumed in deriving dL/dt by Equation (18). Also, we can now
examine our approximation Fshock ≈ 1 used in that derivation.
We obtain

F P P

dL dt R a B R

dL dt c

2 2 ln 8

10 , 46

shock shock mag

AMB
2 2

3 2

( ) ( ) ( )
[( ) ] ( )

S Q

�

�

_

⎡⎣ ⎤⎦

where on the first line we introduce Pshock �
A dL dt dL dt2 AMB

2( )[ ( ) ]S with Γ = 5/3 from the discussion
in Section 3.3 with a radio-lobe area A = πR2, and Pmag �
A dL dt R a B R2 ln 82( )[ ( ) ( ) ]Q obtained by inserting B R( ) xG

a R Ba( ) from Equation (6) into Equation (12). The second line
is obtained taking also a R a L10 3 10 9x x q � and Ba from
Equation (43); 1.7 10AMB

29S � q � gm cm−3 for hydrogen
with number density 10−5 cm−3 (Colgate & Li 2004).
Introducing Equation (40) into Equation (16), still with
fconv = 0.5 and R aln 20,( ) � we obtain (dL/dt)/c = 0.018
for M8 = 1, compared to (dL/dt)/c ≈ 0.01 in Equation (18).
For a nominal ambient temperature of 1 KeV, the sound speed
at this density is cS/c ≈ 10−3, thus justifying the assumption of
a fast shock in Section 3.3.

6.1. Jet Length and Radius

In our model giving the 2D mean field in Figure 1, we must
carefully distinguish between the magnetic mean field structure
and the apparent shape of jet structures associated with
synchrotron images in radio lobes. Our prediction of the
visible length L of the jet is just the length of the magnetic
structure derived in Section 3. Our prediction for the radius is
loosely the diffuse pinch radius R0 (O point), which is the outer
radius of Poynting power ejected from the disk, visible only as
the terminal radius of a bright cone illuminated by synchrotron
radiation with opening angle Θ given by Equation (39).

Growth of the column length L should continue for a time
τ ≈ 108 years, observed to be the lifetime of jet/lobes
independent of mass (e.g., Krolik 1999; Colgate & Li 2004),
perhaps related to the Eddington radiation limit (Beskin 2010).
Using Equation (18), we obtain

L dL dt c0.01 10 cm. 4724( ) ( )U Ux � x

Next we derive the diffuse pinch radius R0 in Figure 1. While
L is the main dynamical variable, we expect that R0 also grows
but more slowly. As was discussed in Appendix B of Paper I,
why R0 grows is related to how hyperresistivity due to 3D
magnetic fluctuations can defeat Cowling’s antidynamo
theorem in 2D, through the intervention of a helicity-
conserving hyperresistivity �G in vt ·s: s � �: = rc .�G
A formula for a helicity-conserving �G in terms of correlated
fluctuations was given in Paper I. Here we avoid needing to
know fluctuations by approximating c�G as

c r v B a48r z∣ ∣ ( ) ( )� U� : �G

rdr B B a r b2 . 48
a

r

z a
3 2 1 2∣ ∣ ( )¨: � �

where we use Bz from Equation (6). Noting that
c v B 0r z∣ ∣∣ ∣� x � �G below the O point but flux growth
requires c 0� �G at the O point where Bz = 0, we see that c�G
changes sign at some R1 < R0. We calculate R1 by substituting

B Rz 1∣ ( )∣ from Equation (6) and R1∣ ( )∣: from Equation (48b)
into Equation (48a) and solving with c 0.� �G Also taking
R1 = R0/αz with an uncertain factor αz < 1, we obtain

R
L

t a
L

c
L

v
v

M
v
v

10

0.003 . 49

z
r

z
r

0
2 3 1 3 2 3 2 3

8
1 3

2 3

( )

U
U

B

B

�

l

G

G

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The far rhs is the result at t = τ = 108 years (e.g., Colgate & Li
2004; Beskin 2010), the typical jet lifetime.
Our predicted length L = 1024 cm (0.3Mpc) in Equation (47)

is reasonably consistent with observations for jet/lobes
associated with radio-loud AGNs (Begelman et al. 1984;
Krolik 1999).
Concerning the diffuse pinch radius R0, we note that the

persistence of a 2D jet with fixed R0 is the expected
consequence of current conservation in our model. As in the
simulations of Nakamura et al. (2006, 2007), weak instability
in three dimensions creating the radio lobes does not destroy
the 2D projection giving a collimated jet that nonetheless
produces field lines wandering into the radio lobe, by
Equation (39). We assume that it is synchrotron radiation that
defines the observed structure of jet/lobes (the dotted cone in
Figure 1), rather than the underlying magnetic mean field
structure in Figure 1. As already noted, the power radiated as
synchrotron radiation is transmitted from the mean field central
column by nonlinear external kink modes producing twisted
field lines. Typical AGN jet envelopes exhibit large, fuzzy
radio lobes emerging from a very bright conical streak that
appears to originate near the black hole with an opening angle
of order Θ ≈ 0.01 radians. This is consistent with Θ as derived
in Equation (39) if we take v v 0.4,z r

2 3∣ ∣B xG giving

R
L

0.001, 500 ( )x

with our undetermined ordering parameter in Paper I equal to
v v 0.01r∣ ∣ xG for αZ = 10, showing consistency with our
assumption that v v 1r∣ ∣G � in the diffuse pinch zone of the
accretion disk.

6.2. Predicted Light Cone

We conclude this section with an evaluation of the opening
angle Θ in Equation (39), which we interpret as the opening of
3D jet emission cones illuminated by synchrotron radiation due
to that half of the power going into electrons. To evaluate Θ,
we estimate γ0 at z from the ion energy acquired by
acceleration, but ignoring radiation for now (see below). We
assume an accelerating field on axis Eaxis = 0.01(V/L), giving

MAXH = m c0.01 eV i
2 = M1.5 109

8
1 2q with V from Equa-

tion (45), where 0.01 is the fraction of Poynting power going
into synchrotron emission, as derived in subsequent papers in
rough agreement with observations (Krolik 1999). We further
assume that ions follow the path of wandering field lines
approximated as r s z z R L0( ) ( )� 2 � with the O-point radius
R0, and we take the accelerating field to be Es = Eaxisa/r(s)
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along this path. Then, we get

ds eE m c ds L a r s

dz a zR

1

,

51

a

L

s i
a

L

a

L

0
2

MAX

MAX 0

( )
( )

( )[ ( )]

( )

¨ ¨

¨

H H

H

� �

�

dza zR

R L M

100 100

10 0.01, 52

a

L

0 MAX 0

1

0 8
3 2

( ) ( )
( ) ( )

¨H H2x �

� x

�

�

⎡
⎣⎢

⎤
⎦⎥

with the O-point radius R0 in Equation (50). Using numbers in
Equations (41)–(45), we write the integral as

dz a zR a R L a a R

M L R

ln 20

20 3 10 53

z

L

0 0 0

9
8 0

0

( )
( ) ( ) ( )

( )
( )

( )
¨ � x

� q⎡⎣ ⎤⎦
for any starting point for the integration z = z0 near the disk,
which we take to be z0 = a with little error since z0 enters only
logarithmically.

Note that in calculating γ0 we have omitted radiation by ions,
which will be dealt with extensively in future papers but is not
important here. First, ions tend to radiate away any velocity
component perpendicular to B. That leaves curvature radiation
as ions try to follow twisting field lines, important in the tightly
wound central column, but not important along the path of
wandering field lines where the field line curvature radius
becomes comparable with the O-point radius.

We postpone a detailed comparison with synchrotron
observations to subsequent papers. Understanding the distribu-
tion of synchrotron emission along the z axis and the
synchrotron frequency spectrum will require other nonlinear
effects due to coupling of m = 1 modes to higher m modes
(e.g., Carey et al. 2011). But the visible cone defined by Θ is
unaffected, the nonlinear evolution of Θ being independent of
ω, as derived in Equation (39).

7. EVIDENCE FOR THE MODEL FROM OBSERVATIONS,
EXPERIMENTS, AND SIMULATIONS

The most direct vindication of our quasi-static model of jets
is the extreme length of jets in Equation (47), in rough
agreement with observations. In subsequent papers, we suggest
that the nonrelativistic jet velocity giving this result can be
reconciled with observations interpreted as relativistic jets as
being the effects of relativistic acceleration of ions and
electrons parallel to B.

The best evidence that the short-wavelength internal kink
modes in Section 4 could accelerate ions comes from
experiments in the SPHEX spheromak mentioned earlier. The
accelerating field E& has been measured and agrees with the
formula in Section 5.1, and the acceleration of ions is observed
directly (Rusbridge et al. 1997).

The best laboratory evidence that kink instability does not
destroy jets comes from other spheromak experiments
discussed below, all exhibiting a highly collimated central
column despite ubiquitous kink mode activity in these
experiments. Experimental evidence that the dynamos needed
to produce jets do exist is being studied in experiments at the
New Mexico Institute of Mining and Technology (e.g., Colgate

et al. 2011) and the University of Wisconsin–Madison (e.g.,
Cooper et al. 2014). Also, we note that our predicted slow
propagation of magnetic jets is not inconsistent with their
postulated role as a cosmic-ray accelerator. That ion accelera-
tion along field lines to velocities dL dt� does not much
affect jet evolution was demonstrated in experiments in the
SPHEX spheromak (Rusbridge et al. 1997).
That an astrophysical jet and its return current do push away

the ambient medium has been discussed and arguably
confirmed in various ways. Lynden-Bell (1996, 2003) dis-
cussed this feature and assumed a return current with radius R
given by balancing magnetic pressure against the ambient
pressure (thermal or ram):

B R z p R z, 8 , . 542
amb( ) ( ) ( )Q �

Observationally, that the ambient medium is pushed away by
radio jet/lobes is verified by the bubbles seen in galaxy clusters
(McNamara & Nulsen 2007). Diehl et al. (2008) has presented
analyses of radio lobes in the intracluster medium that verify
Equation (54) directly. Other observational evidence that AGN
jet/lobe structures create shocks by pushing aside the ambient
medium has been obtained from X-ray measurements of the
intracluster medium (e.g., McNamara & Nulsen 2007). Finally,
the dynamics of jets punching through the ambient medium has
been explored by MHD simulations in Li et al. (2006) and
Nakamura et al. (2006, 2007, 2008), yielding R(z) increasing
slowly in z as pamb decreases away from the central black hole,
approximated here by a fixed large R, adequate since R appears
only logarithmically in Equation (16). The simulations of
Nakamura et al. (2006) also verify Bf ∝ 1/r as the dominant
field component at r > a, as we assumed in calculating the
inductance in Equation (14). Recent simulations of jets pushing
into an ambient medium are also given in Carey et al. (2011),
using a resistive MHD code called NIMROD with boundary
conditions closely resembling those giving Figure 1 (though
the nose was not blunt but somewhat pointed, probably due to a
falloff of vA with radius in these nonrelativistic simulations).
In the laboratory, jet propagation experiments have yielded

direct information about how jets become collimated. Collima-
tion near r = 0 is evident in Figure 2 showing simulations
calibrated to measurements in the SSPX spheromak (Hooper
et al. 2012), corroborated by photographic studies of the early
stages of jet formation in SSPX (Romero-Talams et al. 2006).
While for accretion disks we found that field lines emerge
nearly vertically, the gun used in these experiments has an
annular shape, causing some delay before field lines converge
and straighten to form the equivalent of the central column in
Figure 1. Figure 2 shows the formation of a plasma originating
in an annular (coaxial) region between an inner electrode and
outer electrode (the flux conserver), ejecting from the coaxial
region, and forming a plasma column along the geometric axis
of the flux conserver. Experimental measurements in SSPX and
MHD simulations using the NIMROD code are in good
agreement (Cohen et al. 2009). Figure 2 is a simulation
extending in time a NIMROD run representative of SSPX in a
flux conserver that is longer than that in SSPX, in order to
demonstrate how astrophysical jets confined radially by
Equation (54) ought to propagate away from the disk. In
SSPX, the initial poloidal magnetic flux is prescribed,
determined by the gun injector.
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Figure 2 confirms the following interpretation of the
injection of poloidal flux from the SSPX injector into a fixed
flux-conserver volume. An electrical discharge forms between
the electrodes, with most of the current flowing in a thin layer
at the front of the plasma bubble. The resulting j Bq force
ejects the plasma, forming a bubble bounded by the return
current. From the outset, the return-current channel has the
characteristic blunt-nosed shape of Figure 1, confined radially
by the flux conserver (Figure 2). The inner current layer
pinches down to the geometric axis as the bubble expands
axially, forming a current-carrying column like the central
column of Figure 1. We have also verified that Corsica GS
solutions converge to a pinch, even if we artificially add a large
Br at the disk, giving nonvertical flux ejection. Unlike jets
formed by accretion disks, in the experiment the short length of
the flux conserver is such that the plasma becomes confined in
z, with time for kink modes to grow to nonlinear levels that
generate reconnection events which convert the injected
toroidal flux into poloidal flux, forming a spheromak, as in
the closed flux of Figure 1. Until reconnection occurs, there is
only a weak poloidal magnetic field inside the flux bubble; the
toroidal field is formed by the current flow along the small-
radius central column, dropping approximately as 1/r inside
the bubble, as in Equation (6).

Experiments that more nearly resemble accretion-disk
geometry were carried out by Bellan and coworkers (Hsu &
Bellan 2003; Bellan et al. 2005), in which a small gun on axis
injects helicity into a long flux conserver, though not
consistently in the fast Alfvén regime, giving the behavior in
Figure 2. In the laboratory experiments, even though the
injector radius is smaller than the flux conserver, a small radius
column forms as predicted by our model, now confirmed in
MHD simulations (Zhai et al. 2014).

8. SUMMARY AND COMPARISON WITH PREVIOUS
MODELS

In this paper, we have extended the calculation of magnetic
fields at the surface of accretion disks in Paper I to include jet/
lobes ejected from the disk when dynamo currents rise to a
level sufficient to stretch magnetic field lines embedded in the
disk to enormous distances. We have shown in Section 5 why
jets projecting forward the field profiles produced by the disk
are relatively stable over long distances, yielding in Section 6
calculations of jet dimensions in reasonable agreement with
observations. In future papers, we will show how jets and
especially the nose end of jets become DC particle accelerators
producing UHECRs in the nose.

Like many other models in the literature, we approximate jet
evolution as a sequence of quasi-static equilibrium solutions of
the GS equation, with a length L growing as dL/dt ≈ 0.01 c in
Equation (18). Unlike GS models dominated by hydrodynamic
“winds,” much studied in the literature (e.g., Beskin 2010), we
found that disk dynamics prevents the creation of winds in the
large diffuse pinch zone of our solution, in Figure 1, giving GS
solutions dominated instead by the coronal field of the disk as a
boundary condition, joined to an electric circuit model of the
central column zone where most of the current flows. The slow
evolution of the jet length L(t) shows that ions accelerated to
relativistic velocities flow rapidly along field lines of a
magnetic structure that is slowly changing. In this sense,
observations attributable to relativistic ion and electron
acceleration or transient superluminal wave propagation do

not imply that the magnetic jet itself is “relativistic,” an
essential point in comparing our studies of jet stability with
analytical stability studies of relativistic jets, as discussed in
Section 2.
Our new results concern our unique magnetic boundary

condition for the diffuse pinch region and its influence on jet
stability. In Section 3.1, we noted that the boundary condition
serves to imprint the field of the disk onto the advancing jet. In
the diffuse pinch zone of the disk, we find Bf ≈ (2I)/(cr) at the
disk surface for current I in the central column of Figure 1,
while the poloidal profile Bz(r) is just that required to eject disk
angular momentum as it arrives at each flux surface. For zero
viscosity, all of the angular momentum is ejected magnetically,
giving uniquely B M rB rz

3 2( ˙ ) ( )� 8 rG
� in Equation (6). It

is the falloff of Bz faster than Bf that was shown to stabilize the
diffuse pinch against internal modes, in Section 4. A finite
viscosity dissipating some of the angular momentum inside the
disk only makes Bz fall faster, as is shown in Paper I.
A boundary condition different from ours is obtained from

the description of jet ejection as the winding of a magnetic flux
with footprints frozen in a highly conducting disk (Li et al.
2001; Frank et al. 2002, and references therein). This was the
idea behind the growing magnetic tower model (Lynden-
Bell 1996, 2003). Li et al. (2001) applied flux winding as a
precise boundary condition for a quasi-static GS solution of a
jet embedded in an ambient environment, giving N ≈ ΔΩt as
the number of twists on a field line and L(r) ≈ rΩt ∝ (a/r)1/2

as the vertical height of field lines across a disk with Keplerian
rotation. This is distinctly different from our model, in which it
is the dominant central column current that determines the nose
boundary, giving a blunt-shaped nose with L(r) independent of
r. As discussed in Paper I, that the flux winding concept is
incorrect concerns the nonideal nature of the accretion disk,
allowing the return current jr flowing radially across flux
surfaces within the disk to adjust so as to conserve and recycle
angular momentum in the accretion disk. The distribution of jz
exiting the disk is the determining feature, giving current
concentrated in the central column where most of the
gravitational energy is deposited. It is this concentration of
current by gravity that yields a vacuum-like Bf = (2I)/(cr) as
the dominant field component at the disk and throughout
the jet.
A feature of our accretion disk+jet model is the failure of

our exact diffuse pinch disk solution at r < a = 10Rs, leading
us to represent the central column at r < a using a zero-
dimensional electric circuit model. In Appendix B, we justify
the circuit model by physical evidence of magnetic fields near
black holes and plausible models extending our diffuse pinch
solution inside the central column. Our results can be compared
with Appl & Camenzind (1993), who also solve Equation (1)
with finite Er but with an assumed family of profiles, giving
I r rB r2( ) � l : rG at small r. For an early analytical
treatment, see models based on Blandford & Znajek (1977) and
reviewed in Beskin (2010).
We conclude with a comparison of our model with general

relativistic (GRMHD) simulations intended to be the definitive
coupling of accretion disk dynamics to jet propagation (see,
e.g., deVelliers et al. 2003; McKinney & Gammie 2004;
Tchekhovskoy et al. 2008; McKinney et al. 2012). These
simulations include the black hole region essential to
determining the uncertain parameter b in our model, discussed
further in Appendix B. Similar to our model, GRMHD
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simulations usually start from a poloidal magnetic seed field
with closed flux surfaces. While both approaches find that a
dynamo current causes poloidal flux surfaces to expand
vertically and radially, GRMHD simulations to date produce
relativistic jet currents that fail to enclose the poloidal flux O
point as would be necessary to produce the self-excited
dynamo of our model. In Appendix C we speculate why
including ambient pressure in GRMHD simulations together
with the expansion of poloidal flux might eventually yield a
self-excited dynamo producing the nonrelativistic jets of our
model.

A more profound question may be whether GRMHD
simulations can produce a sustained dynamo. While it is
known that self-excited fluctuations do drive accretion in
GRMHD simulations, Pariev & Colgate (2007) postulate that
self-excited turbulence cannot long sustain the coherent
magnetic field required to produce sustained jets. Adding to
GRMHD codes, something else imposing the needed magnetic
coherence, such as the star–disk collisions proposed in Pariev
& Colgate (2007), might change the outcome. The Pariev–
Colgate conjecture is supported by MHD simulations of star–
disk collisions (but missing magneto-rotational instability;
MRI) in Pariev et al. (2007), shown to be equivalent to a
dynamo drive cEf = αDYNBf already found to be promising in
the simulations in Christodoulou et al. (2008), which do
include MRI using a 2.5D simulation.
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APPENDIX A
WHY JETS DRIVEN BY ACCRETION DISKS ARE

QUASI-STATIC

In Paper I, we discussed the conditions for an accretion disk
to reach a quasi-steady state, as assumed throughout this paper.
In Section 3, we found that jet magnetic fields could also be
calculated as quasi-static GS equilibria, and jet dynamics could
be described as one-dimensional with jet velocity dL/dt. The
conditions for this were (1) pressure inside the central column
zone of the jet must not exceed the pinch force due to the jet
current and (2) the poloidal Alfvén speed inside the jet and in
the shock front at the nose must satisfy v dL dt c0.01A ��
by Equation (18). The absence of centrifugal ejection of jet
mass in our model argues for low kinetic pressure in jets, and
an example of a collimated jet in the presence of internal
electric field pressure is given in Appendices B and C. Here we
justify a fast Alfvén velocity.

A.1. Alfvén Velocity

The condition that the Alfvén velocity v dL dtA � serves to
reduce jet magnetic fields to the quasi-static solution inside a

rigid boundary in Section 3. We take the criterion justifying our
solution in Section 3 to be a plasma density ni satisfying
B n m c4 0.01 ,i iPOL

1 2( )Q � where mi is the mass of hydrogen.
Using BPOL = Bz from Equation (6), we get

n B m c

M a r

4 0.01

1.2 10 1 cm , 55

i iPOL
2

L
2

12
L 8

1 2 3( )
( )

( ) ( )
Q H

Hx q � �

� ⎡⎣ ⎤⎦

where we will find eV m c 1.2 10iL
2 11( )H � � q using

Equation (45). In other words, if the plasma density inside the
jet satisfies Equation (55), then the jet is in the fast Alfvén
velocity limit.
For comparison, we now examine several characteristic

densities. The disk density itself is from Paper I, with Ω from
Equation (41)

n M m r v H

M a r v r

2

10 cm , 56

i r

r

disk

10
8

1 2 3

( )
( )

˙

( ) ( )
Q�

x 8� � �

where M M M7 10 gm s25
8

1˙ U� � q � and H r a r 1 2( )�
from Paper I (Equations (14) and (A7) in that Paper
with g= 1).
By contrast, the minimum density in the jet is that required to

carry the jet current, given by

n j ec M a r1.4 10 cm , 57J
3

8
3 2 5 2 3( ) ( ) ( )x x qG

� � �

where at large r, j j c B r4 z( )( )Qx � �s sG with

B B a rz a
3 2( )� from Equation (6). Finally, the ambient

density is of order namb ≈ 10−5 cm−3 (e.g., Colgate & Li
2004, though highly uncertain).
Since the jet pushes away the ambient medium, the actual

density inside the jet should be its value after ejection from the
disk, plus possible mass loading along the jet due to inward
transport from the ambient. We will discuss both mass supplies
to the jet plasma density, showing that the condition in
Equation (55) is always satisfied in AGN jets.
The density injected into jets by the disk is that which can

escape the gravitational attraction of the black hole. While
MHD models can create current jets from purely magnetic
forces stretching field lines away from the disk, the magnetic
force j Bq acts perpendicular to B, whereas the plasma
required to conduct this current tends to flow parallel to B in
our model. Thus some nonmagnetic force is required to eject
current carriers parallel to B. Mere pressure is not a likely
candidate, except very near the black hole. In our accretion
model in Paper I, this is compounded by the fact that the
coronal boundary where the jet is ejected is the boundary where
disk MHD turbulence driving accretion ceases. In our model, it
is pressure due to this turbulence, not ordinary thermal heating,
that balances gravity and vertical magnetic pinch forces at this
boundary so that the effective pressure vanishes at the jet
boundary.
In the literature, there are two paradigms that do not rely on

pressure for how the current carriers required by MHD could be
generated. One is a thin layer of net charge called a plasma
sheath, analogous to sheaths at the gun electrodes in laboratory
experiments (Lovelace 1976). The other is kinetic “winds”
ejected from the disk, the model most cited being kinetic
ejection by centrifugal forces along field lines sufficiently tilted
away from vertical (Blandford & Payne 1982). However, in
Paper I, we showed that, in a quasi-steady state, jet magnetic
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fields emerge almost vertically, producing negligible centrifu-
gal force. In Paper I, this was shown to follow from the z
component of Ohm’s Law, giving B v r B B ,r r( )� 8 G G� vr
being the accretion velocity that we expect to be much less than
the rotation velocity rΩ. If both pressure and centrifugal forces
are negligible, we are left with electrostatic sheaths as the likely
mechanism to eject current carriers as jets settle into a quasi-
steady state. This is credible because the enormous voltage of
the dynamo available to create a sheath greatly exceeds the
gravitational binding energy (Lovelace 1976).

Current ejection by an electrostatic sheath yields the low jet
density in Equation (57), unless mass loading builds up the
density beyond the sheath, which is not likely, as we show in
Section A.3. For this density and the field amplitude given by
Equation (43), the Alfvén speed is of order 1016/γ1/2 > c, even
for the largest possible eV m ci

2( )-H due to acceleration by
the voltage V in Equation (45).

A.2. Electrostatic Sheaths in a Gravitational Field

An electrostatic sheath is a discontinuity in the electric field
that arises to maintain current flow, not required in MHD
theory. The appearance of a sheath can be derived as follows.
Let Bf be positive so that the region nearest the black hole
serves as an anode; the opposite polarity would yield a cathode
on outgoing field lines with the corresponding anode located
either at the footprint where field lines return to the disk, or
more probably as a virtual anode somewhere in the nose.
Plasma tends to flow parallel to B. Taking s along B, we add an
electrostatic field s�s' s to the quasi-static axial force
balance to obtain

m j ev v t nm V s ne s, 58i si si zi i G( ) ( ) ( )s s � � s s � s' s

with gravitational potential VG. Here j env .si si� At an anode,
this is the ion contribution to the current at speed vsi along the
twisted field lines in Figure 1, in constant ratio to vzi in a
straight column, giving jsi ∝ jzi, which is constant without mass
loading. The ∂Φ/∂s term is the only way to accelerate ions so
as to maintain constant jsi as n falls off near the edge of the
disk. As −∂Φ/∂s increases to do this, electrons are repelled,
yielding a net charge due to ions that create the electrostatic
sheath (or sometimes, a double sheath) as the condition to
maintain the current.

We can approximate an anode sheath at a location z = d as a
Child–Langmuir sheath (Goldston & Rutherford 1995), mod-
ified to account for gravity. The modified Poisson’s equation
has the following form (Fowler et al. 2009a):

s s V d d z

I A v v Z

2

4 , 59

G

si si

2 2 2 2 3

1 1

( )( )
( ) ( ) ( )
G

Q

� s ' s � s s �

� �� �⎡⎣ ⎤⎦
V e V d d z1 , 60s G

1( ) ( )( ) ( )G � � ' � ��

v c E m c E E e m c, , 61si i i i i i
2 2 4 1 2 2( ) ( )G� � � �⎡⎣ ⎤⎦

where vsi(Z) is the ion velocity at Z d� beyond the sheath, VS

is the sheath voltage, and n I eAvi si( )� is the ion charge
density for sheath area A = πa2. Boundary conditions are f = 0
at z = d and s 0Gs s l at z = Z. Near z = d, v csi � , while
vsi(Z) can be of order c to ensure ion escape from gravity.
Because of the abrupt change in f through a sheath giving a

very large electric force, in Equation (59) we can neglect the
gravitational force term containing VG(d), giving a Child–
Langmuir solution for f with the “Debye” sheath thickness
calculated as if the temperature were eVS (Goldston &
Rutherford 1995). Relativistic ions included in Equation (61)
could broaden the sheath near the black hole. Exactly where the
sheath forms depends on how the density drops in the disk
corona.

A.3. Mass Loading beyond the Sheath

The jet nose with magnetic field equal to that of the dynamo
easily pushes aside the ambient pressure at small r and
continues to do so as the jet lengthens, as discussed in
Section 7. This is true from the outset, the field magnitude
nearest the black hole being larger with smaller mass, B ∝
M−1/2 from Equation (43). Thus, as accretion proceeds, any
mass not captured within the disk remains part of the ambient
medium that is pushed away. Then the jet plasma density is
either that in Equation (57) or this density augmented by mass
loading along the jet.
To calculate mass loading, let S be the source of mass

loading given by

S nn v n D X , 62i0 amb
2( ) ( )T� �

where (σv)i is the ionization rate,n0 represents neutral atoms
somehow penetrating through the return current and the diffuse
pinch in Figure 1 to reach the central column, and D represents
diffusion of ambient plasma from a distance X. The density
along the column would be, for viz ≈ c

n Sz j e c Sz c n , 63zi I( ) ( )� � � �⎡⎣ ⎤⎦
where jzi is the ion current entering the sheath, giving
nI = nJ(a).
That n/nI is in fact likely to be at most of order unity can be

seen as follows. The most probable source of neutral particles
would be the ionized ambient namb ≈ 10−5 cm−3. Let the
neutral fraction be fI (say, an upper limit of 1%). For

v 10 KeV electronsi
8( ) ( )T � �� and an initial n n ,I�

Sz cn 1I( ) � as long as fI < 30%, which is surely true. The
other likely source is stars penetrating the structure. However,
stars tend to accrete mass, not deposit it, and in any case the
average n0 due to stars, of order n 10 pc 100

5 3 50( )� x � cm−3

(Pariev & Colgate 2007), is much less than our upper-limit
estimate for ambient neutrals and hence irrelevant.
Concerning plasma diffusion, the largest diffusion coeffi-

cient due to a random walk of Larmor orbits at the ion
cyclotron frequency could give D r cE eBc iL

2 ( )Xx x (where
Ei is the ion energy), similar to “Bohm diffusion” but with the
ion energy rather than electron temperature. For kiloelectron-
volt ambient ions and Ba in Equation (43),
D B B M6 10 ,a

7
8
1 2( )� q giving for diffusion from a distance

X scaled to a = 3 × 1014M8 cm and L = 1024 cm

Sz cn B B a X z L10 1. 64I aDIFF
10 2( ) ( )( ) ( ) ( )� � �

The inequality holds both for radial diffusion from the return-
current boundary at X = R (even though (aBa/BR) = 1 there)
and for diffusion from the nose with B = Ba and X a� to be
of interest.
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APPENDIX B
CENTRAL COLUMN MAGNETIC STRUCTURE; THE

PARAMETER b

Our model, developed in Paper I and reviewed in the
Introduction and Sections 3.1 and 3.2 with the parameters in
Section 6, is fully determined except for the voltage
enhancement factor b, if we can assure ourselves that solutions
to Equation (1) exist inside the jet central column. Then the
associated electric field at the midplane (z = 0) determines b,
given by

b drE E a1 , 65
R

a

r a ( )
*

¨� �

E c r v B z b, 0. 65r r z
1 ( ) ( )� 8 � �� ⎡⎣ ⎤⎦

In Equation (65b), Er comes from Equation (10) with
D D c v Br r z

1 ∣ ∣∣ ∣x � xG
� due to disk fluctuations, as discussed

in Section 3.1. In Equation (65a), Ea is obtained by applying
Equation (65b) at r > a where vr∣ ∣ is small, giving
E a c B b B1 2a a a a( ) ( )� 8 � by Equation (43), for f = 1/4.

Substituting Equation (65b) into Equation (1) with Equa-
tion (5) as a constraint allows us to extend our collimated jet
solution to R* near the black hole. The exact result depends on
the unknown vr in Er that could be determined by the GRMHD
codes discussed in Appendix C. Collimated relativistic
solutions for a range of Er profiles are given in Appl &
Camenzind (1993). A similar exact cylindrical solution of the
Maxwell–Einstein equations appears in Chapline & Barbieri
(2014), giving our Equation (1) for zero spin of the black hole.
In addition, recent interpretations of jet observations support
the idea that the radio-loud AGNs of interest here must produce
jets with magnetic fields very close to the black hole
(Zamaninasab et al. 2014), suggesting that R* in
Equation (65a) could extend very near an event horizon due
to a black hole.

Example solutions such as those in Appl & Camenzind
(1993) yield a reduction in the pinch force in Equation (1)
accompanied by a flattening of the Bz profile, as we assumed in
calculating fields in Figure 1. In joining such solutions onto the
diffuse pinch, the diffuse pinch is seen to act as a “jacket”
confining and collimating the central column. Then roughly we
can take Bz and Bf constant in Equation (5), whereby Ω(r) ∝ I
(r) ∝ r, giving zero rotation near the black hole. Given 0,8 l
integrating Equation (5) over r shows that all or most of the
angular momentum accreted from a distant region is ejected as
a Poynting jet, so the near neighborhood of the black hole
would serve only as a gravitational attractor in a quasi-steady
state. This assumes that, though in principle a black hole with
an initial spin can itself serve as a Faraday disk, the timescales
are such that a black hole created by accretion has come into a
quasi-steady state with the accretion disk and jet that constitute
its environment. The black hole simply acquires charge and
current as needed to exclude the plasma E and B.

Extended to the corona, constant Er ≈ Ba at r < a gives, with
B B A r a ,z a

3 2[ ( ) ]� � b v c A1 1 52[ ( )( )]x � x (the
value used in Section 3.3) for v/c ≈ A = 1/2. A different
estimate can be obtained from the analysis of Zamaninasab
et al. (2014), whereby data from 76 radio-loud AGN
jets give as the magnetic flux near the black hole

Mc R50 2 .sBH
2[ ˙ ( ) ]' x Using Equations (42) and (43), our

model gives, for f = 1/4 and Bz∣ ∣ above with A = 1/2,

rdr B b Mc R2 10 2 .BH
R

a

z s
3 4 2∣ ∣ [ ˙ ( ) ]

*
¨Q' x x Equating

10b3/4 ≈ 50 gives b ≈ 8. Thus, our value b = 5 assumed in
Section 6 appears to be reasonable, noting also that V ∝ b1/4.

APPENDIX C
GRMHD SIMULATIONS

GRMHD simulations solve Maxwell’s equations together
with general relativistic momentum equations that we write as

j B Eckinetic terms , 661 ( )T� q ��

where E 4 .·T Q� � For jet densities in Appendix A.1, it
gives an Alfvén velocity ≈c. We can drop the kinetic terms
representing both pressure and inertia, giving the force-free
degenerate electrodynamics (FFDE) force balance equation
(Meier 2012):

j B Ec 0. 671 ( )Tq � ��

Our model presented in this paper drops the electric field,
justified after the fact because E/B ≈ v/c is small except very
near the black hole. Then the fact that approximately
j B 0q � requires j to be parallel to B. Hence, in our
model, disks can only eject current as large loops enclosing the
O point, giving Bf ≈ (2I/cr) as in Equation (6), and from this a
huge inductance giving dL dt c� in Section 3.3.
By contrast, it is found in GRMHD simulations that an

Alfvén velocity ≈c allows current loops that avoid the O point
by folding back along the outer boundary of the outgoing jet,
like a coaxial cable with negligible inductance, giving dL/dt ≈
c. How this happens can be understood from the following
example, using Faraday’s Law and a current density j given by
the FFDE force balance. Specifically, we have

B t c E z dL dt c E B a, 68r r( ) ( )s s � � s s l �G G

j E B j j jc B b. 682( ) ( )T� q � w �?& &

In the absence of a poloidal field, Equation (68a) can give a jet
at speed c if the rest mass Alfvén velocity would exceed c so
that FFDE remains valid. Speed c propagation occurs if
Er = Bf, yielding jP = 0 and j⊥ = σc if Bz = 0. GRMHD
simulations launch similar jets into a preexisting poloidal field,
again giving jz = σc that reverses sign (because σ does)
immediately outside the central column, giving the low-
inductance coaxial structure mentioned above. (In our model,
σ also changes sign but not jz coming from the return of jP
through the disk: see Paper I.)
That GRMHD currents should ultimately produce

dL dt c� characterizing our model can be seen by repeating
the derivation of dL/dt in Section 4, giving

d
dt

L rdr
B E dL

dt
rdr

B
rdr

B

I
c

dL
dt

I
I

R
a

f IV
a

2
8

2
8

2
8

1 1 ln

69

a

a
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2

2

2
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Q
Q

Q
Q

�
x �

x � �

x

G
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⎤
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In Equation (69a), on the second line fdis represents
dissipation of magnetic energy, discussed below; the unity
term represents integration over the central column and its near
neighborhood where any j⊥ exists in GRMHD simulations,
while the terms in {...} represent the region at r > a where
B I I cr2( )x �G ? dominates, where I⊥ comes from j .?
In Equation (69b), ...� § indicates an average over the central

column and its nearby return current for GRMHD solutions.
We note that though j? is perpendicular to B, the speed c wave
in Equation (68a), approximated as a cylinder, has jr = Br = 0
along the jet. Closure of the j? current loop occurs only at the
nose, through an area of order πa2. Finally, σ ∝ Er(a) and I ∝
Bf(a) in the nose region, giving then the approximate result on
the rhs of Equation (69b). Using Equation (69b),
Equation (69a) gives

dL
dt

E
B

R
a

f c V I

f c

1 1 ln

. 70

r
2 2

dis
2

dis
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( )

� � x

x
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⎜ ⎟
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⎡
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⎠⎟

⎤
⎦
⎥⎥

⎛
⎝

⎞
⎠

⎫
⎬⎪
⎭⎪

⎤

⎦
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Noting that (cV/I) is approximately (Er/Bf) averaged over the
central column, we have made approximations here such that,
for Er = Bf and zero dissipation (fdis = 1), the solution is
dL/dt = c, as found in GRMHD simulations. In Section 4, we
find f f F1 1 0.25,dis conv shock( ) ( )� � � � which is certain to
slow down the jet, in which case GRMHD simulations also
show that (Er/Bf) begins to fall below unity, qualitatively
consistent with Equation (68a). Guan et al. (2014) and
Bromberg & Tchekhovskoy (2015) have shown that dissipation
of mean-field magnetic energy by nonlinear kink modes also
contributes a reduction in the jet velocity, whether or not some
magnetic perturbation energy is lost by particle acceleration.
By Equation (70), any fdis < 1 should begin to expose the
inductive factor ( R aln ) that eventually gives dL/dt = 0.01 c
in Equation (18), consistent with observed lengths of jets.

We conclude that, in order to represent AGN jets, GRMHD
simulations should always include some kind of magnetic
dissipation to slow down the jet. Even so, Er would continue to
play a prominent role near the black hole, as discussed in
Appendix B. An approximate reconciliation of our model with
GRMHD could be obtained by integrating Equation (1) with
B B r a1z a

3 2[ ( ) ]x � as in Appendix B, yielding

B E B r a r a1 . 71r a
2 2 2 3 2 7 2( ) ( ) ( )x � �G

⎡⎣ ⎤⎦
This yields our diffuse pinch “jacketing” a GRMHD-like
solution with Er ≈ Bf inside r < a. In subsequent papers, we
will show how kinetic processes, rather than MHD, cause Er ≈
Bf to spread across the nose (the top of the jet where the jet
current returns) so as to create an ion accelerator ejecting much
of the jet power as ultrahigh-energy cosmic rays.
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