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The nonlinear co-existence of b–induced Alfv�en eigenmode (BAE) and b–induced Alfv�en-acoustic

eigenmode (BAAE) is found in simulations using the gyrokinetic toroidal code, which provides a

new mechanism responsible for BAAE excitation in tokamaks. Here, the normalized pressure b is

the ratio between plasma thermal pressure and magnetic pressure. The nonlinear simulation results

show that the BAAE branch emerges after the BAE branch is saturated. The mode structure’s evo-

lution shows that existence of BAAE will change the original BAE mode structure. The perturbed

distribution functions in the velocity phase space show that a new resonance region manifesting the

wave-particle resonance in the BAAE branch appears during the nonlinear co-existence stage.

Published by AIP Publishing. https://doi.org/10.1063/1.5004676

I. INTRODUCTION

Energetic particles, including fast ions and fast electrons

produced by the fusion reaction and auxiliary heating, can

excite various Alfv�en instabilities in magnetic confinement

fusion plasma such as toroidicity-induced Alfv�en eigenmode

(TAE),1 b–induced Alfv�en eigenmode (BAE),2,3 reversed

shear Alfv�en eigenmode (RASE),4,5 and b-induced Alfv�en-

acoustic eigenmode (BAAE),6,7 which may induce significant

transport and degrade the overall plasma confinement.8–10

Here, the normalized pressure b is the ratio between plasma

thermal pressure and magnetic pressure. The BAE is formed

by finite compressibility induced by the geodesic curvature of

equilibrium magnetic field and plasma pressure.11–13 The

weakly-damped BAE has been widely observed in DIII-D,2

TFTR,14 FTU,15 HL-2A,16 and Tore-Supra,17 and has been

investigated by simulations using various codes, such as the

gyrokinetic toroidal code (GTC),18 the MHD-gyrokinetic

hybrid code (XHMGC)19 and the particle/MHD hybrid code

(M3D).20 The Alfv�en instabilities related to fast electrons

were widely observed, such as the internal kink mode and

fishbone in DIII-D,21 BAE and fishbone in HL-2A.22,23 The

fast-electron driven BAE was identified for the first time both

in Ohmic and electron cyclotron resonance heating plasma

in HL-2A23,24 and has been verified in linear simulations25

using GTC. The BAAE is formed through the coupling of the

shear Alfv�en continuum and the acoustic continuum in the

toroidal geometry, which was first formulated based on the

magneto-hydrodynamics (MHD) approach.6,7 BAAE is then

derived through kinetic theory.26 Recently, the formulation of

BAAE27 is retained by solving the radial envelope equation

in the balloning mode theory taking into account kinetic

effects of thermal plasmas. BAAE has then been observed in

various tokamaks such as DIII-D,26 JET,6,7 NSTX,28 and

ASDEX29 tokamak, and LHD,30 HSX,31 and H132 stellators.

And BAAE in toroidal plasmas is verified and studied by

gyrokinetic particle simulations.33,34

The frequency of BAAE is lower than the frequency of

BAE, since the BAAE spectral gap is below the BAE spectral

gap in the Alfv�en continuum. Due to BAAE’s low frequency,

it is heavily damped by ion kinetic effects,35–37 especially

when ion temperature (Ti) and electron temperature (Te) are

comparable, which has been verified by simulations.33 With a

strong drive of fast particles, the non-perturbative effect38,39

of fast particles should be considered, which will modify

radially local dispersion relation34 and thus build up a new

wave-particle energy exchange channel. On the other hand, a

strong drive will possibly excite multiple Alfv�en modes at the

same time. Meanwhile, multiple mode co-existence will lead

to mode-mode coupling and mode overlap, which may gener-

ate cascaded transport that enhances the cross field transport

of particle, momentum and energy, therefore degrading the

overall system performance. Accordingly, the phenomenon

of the co-existence of BAE and BAAE is found at ASDEX29

and NSTX,28 where BAE and BAAE have similar mode

numbers and radial location. Especially at NSTX, large

particle losses emerge during the co-existence of multiple

low frequency Aflv�en eigenmodes (AEs), BAE, and BAAE.

Besides, recent GTC simulations34 show that dominant mode

changes from BAAE in larger tokamak to BAE in small toka-

mak, due to dependence of wave-particle resonance condition

on tokamak size. Considerably, increased fast particle losses

due to coupling with RASE and TAE10 have already been

established. Thus, the co-existence of BAE and BAAE will

not only provide a new possibility for BAAE excitation,

but also provide a typical case to investigate the nonlineara)Electronic mail: wzhang@iphy.ac.cn. URL: https://www.indac.info.
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physics of mode-mode coupling and mode overlap and its

impact to particle, moment, and energy transport, which is

potentially very important in the future larger tokamak, such

as ITER40 and DEMO.

In the current work, the co-existence of BAE and BAAE

is found in GTC nonlinear simulations, when the pressure gra-

dient of fast electron is big enough. GTC41–43 has been suc-

cessfully applied to the simulation of microturbulence,44,45

pressure-driven Alfv�en eigenmdoes (AEs),18,46 current-driven

instabilities,47,48 and radio frequency waves49,50 in fusion plas-

mas. The wavelet analysis shows that BAAE begins to be

observed after BAE is saturated. The mode structure in the lin-

ear stage behaves as pure BAE; in the nonlinear stage, the

mode structure changes due to overlap of two modes. The

phase space structure of the perturbed distribution function of

fast electrons shows that the wave-particle resonance region

for the BAAE mode appears after BAE saturation and inten-

sity becomes stronger in the later nonlinear time. All these

results show that the BAAE and BAE instabilities co-exist in

the nonlinear simulations, which provides a new mechanism

for BAAE excitation in tokamaks.

This paper is organized as follows: Physical model is

presented in Sec. II. Parameters and equilibrium in the simu-

lations are presented in Sec. III. The analysis of the simula-

tion results is in Sec. IV. Section V is the discussion and

summary.

II. PHYSICAL MODEL

The gyrokinetic equations51 are used to describe the

plasma of toroidal systems in five-dimensional phase space

d

dt
fa X; l; vk; t
� �

� @

@t
þ _X � r þ _vk

@

@vk
� Ca

" #
fa ¼ 0; (1)

_X ¼ vk
B

B0

þ vE þ vc þ vg; (2)

_vk ¼ �
1

ma

B�

B0

� lrB0 þ Zar/ð Þ � Za

mac

@Ak
@t

; (3)

where gyro-center position X, magnetic moment l, and par-

allel velocity vk are selected as a complete set of indepen-

dent variables, and the index a¼ i, e, fe represents the

particle species of thermal ion, thermal electron, and fast

electron, respectively. Za is the particle charge, ma is the

particle mass, Ca is the collisional operator, / and Ak are the

electrostatic potential and the vector potential parallel to B0,

respectively. Here, B0 � B0b0 is the equilibrium magnetic

field, B ¼ B0 þ dB; B� ¼ B�0 þ dB; B�0 ¼ B0 þ ðB0vk=XaÞr
�b0; Xa is the cyclotron frequency of species a. The com-

pressional component of the magnetic field perturbation is

excluded by assuming dBk ¼ 0, so that the magnetic field

perturbation can be prescribed as dB ¼ r� ðAkb0Þ. The

E� B drift vE, magnetic curvature drift vc, and grad- B drift

vg are given by

vE ¼
cb0 � /

B0

; (4)

vc ¼
v2
k

Xa
r� b0; (5)

vg ¼ �
l

maXa
b0 �rB0: (6)

Since the Larmor radii of electrons are much smaller com-

pared with the characteristic spatial scale of BAE which is of

the same order of the thermal ion Larmor radius, the drift-

kinetic limit is used for electrons25 for simplicity while the

finite Larmor effect is retained for the thermal ion.

For thermal electrons, the transit frequency and bounce

frequency are much higher than the BAE frequency, since

the mess of electrons is very small. On the other hand, their

precession frequency is much lower than the BAE frequency,

since their energy is smaller compared with fast electrons.

Due to the lack of effective resonance resources, the thermal

electrons provide the little kinetic effect to the fast-electron

driven BAE mode. For the low frequency mode x� kkve,

the thermal electron is further simplified to the fluid-kinetic

hybrid model,42,52 which consists of a lowest-order adiabatic

part and a high-order non-adiabatic part with linear and non-

linear kinetic terms.

In the lowest order of the fluid-kinetic hybrid model, by

integrating Eq. (1) in the velocity space and keeping the

first-order terms, the fluid continuity equation of thermal

electrons can be described by

@dne

@t
þ B0b0 � r

n0eduke
B0

� �
þ B0vE � r

n0e

B0

� �

� n0e v� þ vEð Þ � rB0

B0

¼ 0; (7)

where v� ¼b0�rðdPekþdPe?Þ=ðn0emeXeÞ; dPek ¼
Ð

dvmv2
k

dfe; dPe?¼
Ð

dvlB0dfe. dne¼
Ð

dvdfe is the perturbed thermal

electron density, n0eduke¼
Ð

dvvkdfe is the perturbed electron

parallel velocity, n0e¼
Ð

dvf0e; f0e is the equilibrium distribu-

tion function of the thermal electron, and dfe¼fe – f0e is the

perturbed distribution function of the thermal electron. Note

that
Ð

dv¼
Ðþ1

0
dl
Ðþ1
�1 dvk2pB0=m.

The perturbed parallel velocity of the thermal electron

in the above equation is calculated by inverting the parallel

Ampère’s law

en0eduke ¼
c

4p
r2
?Ak þ Zin0iduki � en0fedukfe: (8)

The vector potential Ak in the above equation is obtained by

using Faraday’s law

1

c

@Ak
@t
¼ �b0 � r/� dEk ¼ b0 � rð/eff � /Þ; (9)

where an effective scalar potential /eff is defined to represent

the parallel electric field,

dEk � �b0 � r/� 1

c

@Ak
@t
¼ �b0 � r/eff :

In order to calculate the effective potential /eff, Eq. (1) is

expanded in terms of dm � x=ðkkveÞ for thermal electrons.

The leading order equation reads
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vkb0 � df ¼ �vk
dB0

B0

� rf0ejv? þ vk
ef0e

Te
b0 � r/eff : (10)

The above Eq. (10) has a solution that can be written as

df ¼ ef0e

Te
/eff þ

@f0e

@w0

����
v?

dw; (11)

where w0 and dw are the equilibrium and perturbed poloidal

flux, respectively. Equation (11) describes the adiabatic

response of thermal electrons, that is, thermal electrons are

isothermal along the perturbed magnetic field line, with the

Boltzmann response to scalar potential. In deriving Eq. (11),

we assume an equilibrium Maxwellian distribution for the

parallel velocity with no inhomogeneity along the field line

b0 � rf0e ¼ 0. The notation rf jv? means derivation taken at

v?¼ const instead of l¼ const.

Integrating Eq. (11) over the velocity space, /eff can be

expressed as

e/eff

Te
¼ dne

n0e
� dw

n0e

@n0e

@w0

: (12)

The poloidal flux @dw=@t ¼ �c@ð/eff � /Þ=@a0, where

a0¼ q(w0)h – f is the magnetic field line label in terms of the

poloidal angle h and toroidal angle f in the magnetic

coordinate.

In the lowest order, the pressure term in Eq. (7) is writ-

ten as

dPek ¼ dPe? ¼ en0e/eff þ
@ðn0eTeÞ
@w0

dw: (13)

The system can be closed with the gyro-kinetic Poisson’s

equation53

Z2
i ni

Ti
ð/� ~/Þ ¼

X
a¼e;i;fe

Zadna; (14)

where ~/ ¼
P

k /kC0ðk2
?q

2
i Þ is the second gyro-phase-aver-

aged electrostatic potential.54

III. PARAMETERS AND EQUILIBRIUM

In this work, an equilibrium with a concentric cross-

section has been used for simplicity. The safety factor profile

[Fig. 1(a)] is q ¼ 1:797þ 0:8ðw=wwÞ � 0:2ðw=wwÞ
2
, where

w is the poloidal flux, w¼ 0 is on the magnetic axis, and

w¼ww is at the plasma boundary. The inverse aspect ratio is

� � a/R0¼ 0.333 in terms of tokamak minor radius a at wall

and on-axis major radius R0. The q¼ 2 rational surface is

located at the local minor radius r¼ 0.5a. The thermal electron

density n0e is uniform and the fast electron density [Fig. 1(b)]

is nfe ¼ 0:05n0eð1:0þ 0:25ðtanhðð0:2� w=wwÞ=0:1Þ � 1:0ÞÞ,

FIG. 1. Safety factor q profile (a) and

fast electron density nfe profile (b) in

our simulations. The dashed lines cor-

respond to the values around the ratio-

nal surface q¼ 2.

FIG. 2. Alfv�enic and acoustic continua for the most unstable toroidal mode

n¼ 3 are calculated using an eigenvalue code ALCON with poloidal har-

monics m 2 [–20, 20]. The thick lines are the Alfv�enic branches and the thin

ones are the acoustic branches. The BAE and BAAE spectral gaps are

marked.

FIG. 3. Time history (a) and frequency

spectrum (b). In panel (a), the black

line is the real part and the red line

is the imaginary part of electrostatic

potential. In panel (b), the red line rep-

resents x0, and the blue line represents

0.2x0, which is around the BAAE

frequency.
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so the fast electron density gradient reaches its maximum with

R0/Lnfe¼ 10 near the q¼ 2 surface, where Lnfe is the density

gradient scale length of fast electron. The thermal ion density

n0i is obtained by the quasi-neutral condition Zin0i¼ n0eþ nfe,

where the thermal ion’s charge number is Zi¼ 1. The thermal

plasma temperature is uniform with Ti¼ Te. The fast electrons

are loaded as a local Maxwellian distribution for simplicity

with uniform temperature Tfe¼ 25Te. The thermal plasma’s

on-axis beta is b ¼ 4pn0eðTe þ TiÞ=B2
0 ¼ 0:01436 with B0

being the on-axis magnetic field. In the nonlinear simulations,

a toroidal mode filter is used to select the most unstable mode

n¼ 3, which has khqi¼ 0.125 at the q¼ 2 rational surface.

Here, kh¼ nq/r is the poloidal wave-vector, qi ¼
ffiffiffiffiffiffiffiffiffi
miTi

p
=eB0

is the thermal ion gyro-radius, a¼ 477qi, and mi is the ion

mass. The parallel wave number is defined as kk ¼ ðnq� mÞ=
qR in terms of major radius R, and it is almost zero at the ratio-

nal surface. Given all these plasma equilibrium profiles, the

frequency of the upper accumulation point of the BAE gap is

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Ti=2miR2

0

p
� 2:34vi=R0 with the ion thermal veloc-

ity vi ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
and it can correspond to the continuum spec-

trum (Fig. 2) of the n¼ 3 toroidal mode, which is obtained

using an eigenvalue code called ALCON55 that solves the

Alfv�en continua with acoustic coupling.

IV. RESULTS AND ANALYSIS

A. History and spectrum

The nonlinear simulation here is an initial value problem

and starts with small amplitude random noise. The BAE insta-

bility is built-up around the q¼ 2 rational surface, and its

amplitude oscillates with a real frequency xBAE¼ 0.85x0 and

grows with a rate c¼ 0.11x0 or c/xBAE¼ 13%, which means

that this is a quite strongly driven case. Figure 3(a) shows the

time evolution of the (n, m)¼ (3, 6) mode at the mode rational

B  C C

FIG. 4. Time evolution of (a) amplitude of electrostatic potential je/=Tej
and dominant frequency x (black) of wavelet analysis, and (b) frequency

power spectrum. The left axis of panel (a) and (b) is x/x0. The right axis of

panel (a) is in the arbitrary unit. The unit of the power intensity in panel (b)

is arbitrary.

FIG. 5. Poloidal mode structures (a)–(c) and radial profiles (d)–(f) of electrostatic potential e//Te at three selected typical time points. The dotted circle in

panel (a)–(c) is the q¼ 2 rational surface. The x axis in panel (a)–(c) is the major radius R/R0 and the y axis is the vertical distance from the midplane. Time

steps for each column from left to right are, respectively, labeled as A–C in Fig. 4.
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surface. The mode reaches a non-regular oscillation state after

saturation with its amplitude being je/=Tej ¼ 0:075. The

Fourier analysis of the electrostatic potential / in Fig. 3(b)

shows that a new branch is found around x� 0.2x0 in the

BAAE spectral gap besides the BAE frequency branch. In Fig.

2, the BAAE spectral gap resides in a frequency range which

is lower than the BAE spectral gap, and these two modes may

locate in the same neighboring region of the rational surface

with the same dominant mode number. The wavelet analysis

in Fig. 4 shows that there are two frequency regions. The

lower region falls in the BAAE spectral gap and the higher

region falls in the BAE spectral gap. The BAAE frequency

branch is clearly evident right after the BAE instability is satu-

rated. This indicates that BAE and BAAE co-exist in the non-

linear stage of our simulations.

B. Poloidal mode structure

Then, we choose mode structures at three typical time

points for further investigation. In the linear stage (point A

in Fig. 4), the mode structure has the same poloidal polariza-

tion [Fig. 5(d)] as the pure e-BAE.25 In the nonlinear stage

(point B in Fig. 4) when BAE’s amplitude is nearly mini-

mum in the oscillation process, a new mode branch emerges

on the larger radius side of original BAE and it has lower

rotation velocity in the h direction than the BAE branch dur-

ing the evolution of mode structure (Fig. 6). Therefore, we

can infer that this new branch corresponds to BAAE. In the

nonlinear stage (point C in Fig. 4) where BAE’s amplitude is

predominant again, the mode structure behaves like BAE

again.

C. df and d2f in (E, k) space

Generally, the wave-particle resonance condition56 for

low-frequency waves is x� kkvk � pxt ¼ 0 for purely pass-

ing particles, and x – nxpre – pxb¼ 0 for deeply trapped

particles, where p is an integer number, and xt, xb, and xpre,

are the guiding center transit, bounce, and procession fre-

quency, respectively. The relative strength of resonances can

be inferred from the square of the perturbed distribution

function of the fast electron df 2
fe in the phase space.57,58 df 2

fe

is a function of the equilibrium constants of motion (E, k),

where E is the guiding center kinetic energy and k¼lB0/E
is a measurement of pitch angle. In the linear stage, only the

wave-particle resonance for BAE instability is visible in the

df2 (Fig. 7(a)] and df [Fig. 8(a)] plots. In the early nonlinear

stage, df [Fig. 8(b)] does not show BAAE frequency, but df2

[Fig. 7(b)] begins to show up the BAAE frequency. In the

late nonlinear stage, the resonance region of BAAE is very

clear for both df2 [Fig. 7(c)]and df [Fig. 8(c)]. The evolution

of the phase space corresponds to wavelet analysis results—

the co-existence of BAE and BAAE is found in the nonlinear

stage.

V. DISCUSSION AND CONCLUSIONS

In this work, the co-existence phenomenon of BAE and

BAAE is found in the nonlinear simulations by using GTC,

which provides a new mechanism for BAAE excitation in

the presence of strong damping for BAAE in tokamak. In

our simulations, the Fourier analysis and wavelet analysis

show that after the saturation of BAE, a new frequency

branch in the BAAE spectral gap is observed. Next, the

poloidal mode structures are investigated. It is found that in

the nonlinear stage, a new mode branch emerges on the

larger radius side of the original BAE, and this new mode

branch has a lower rotation speed in the h direction than the

BAE branch during the evolution of mode structure, which is

consistent with the frequency analysis. And the phase space

structures of the fast electron perturbed distribution function

show that a new resonance region corresponding to BAAE

frequency appears after saturation of BAE. Therefore, all the

FIG. 6. The evolution of the mode structure. The time point A, B, C corre-

sponds to 200R0/vi, 310R0/vi, 375R0/vi in the video, respectively. Multimedia

view: http://doi.org/10.1063/1.5004676.1

FIG. 7. Phase space (E, k) structures of df 2
fe. Dot lines are the wave-particle resonance lines for trapped particles processional frequency xBAE¼xd¼ nxpre.

Dotted-dashed lines are the resonance lines for trapped particles processional frequency xBAAE¼xd¼ nxpre. Time steps (a)–(c) are labeled as A–C in Fig. 4.
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above related aspects suggest that the new mode emerging in

our nonlinear simulations is a BAAE branch, nonlinearly co-

existing with the BAE branch.

In addition, we change the profiles and successfully

repeat the co-existence phenomenon, which indicates that

there should be a certain physical mechanism. One possible

intuitive idea is that the free energy excites BAAE instability

after BAE absorbing enough free energy and being saturated.

The latter is dominant at the beginning. Furthermore, the co-

existence phenomenon is also found in the fast ion driven

cases, which is not discussed in this paper. The co-existence

of BAE and BAAE has been discussed and investigated

through mode structures and phase space structures. This

work has setup a useful case that can be used to investigate

the nonlinear physics of the mode-mode coupling and mode

overlap, which may lead to enhancement of particle, moment,

and energy transport and will be presented in the near future.
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