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Abstract
Global gyrokinetic particle simulations and nonlinear gyrokinetic theory
indicate that electron temperature gradient (ETG) instability saturates via
nonlinear toroidal coupling. In such nonlinear interactions, the wave energy
at the unstable high toroidal-mode number domain cascades towards the more
stable lower toroidal-mode number domain via scatterings off the driven low-
mode number quasi-modes. During the saturation process, there is little
zonal flow generation and the radial fluctuation envelopes maintain extended
structures. The nonlinear coupling process depends critically on the toroidal
geometry and, as such, represents a new paradigm for the spectral cascade of
drift wave turbulence in toroidal systems.

1. Introduction

Recent numerical simulations have demonstrated that nonlinear saturation of the electron
temperature gradient (ETG) instability is due to nonlinear toroidal couplings [1, 2]. Unlike
in the case of ion temperature gradient (ITG) modes [3–6], there is little zonal flow (ZF)
generation [7] during the saturation process and the radial fluctuation envelopes maintain
extended structures [1, 2], known as streamers. Simulation results also indicate that the
dominant nonlinear interaction is due to couplings of fluctuations with different toroidal mode
numbers, n. In fact, the saturation level of a single n mode is significantly higher than that of
two ns. Furthermore, the nonlinear ETG fluctuation spectrum is characterized by a nonlocal
inverse cascade process, where the longest wavelengths are generated first [1, 2].

Understanding these results and providing a theoretical framework to explain these
peculiar ETG dynamics is the main motivation of the present work. In section 2, we derive
the spectral transfer equations for ETG turbulence in a framework that is sufficiently general
so that it may be readily extended to the corresponding dynamics of the ITG case. These
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equations demonstrate the existence and the truly toroidal nature of the nonlocal inverse
spectral cascade process via drift wave turbulence scattering off the driven low-mode number
quasi-modes, which have the role of mediators [1,2]. Despite its general character, this process
dominates the nonlinear ETG dynamics since it occurs on a typically much shorter time scale
than that of spontaneous ZF generation, as shown in section 3; however, the same process
becomes subdominant for ITG dynamics with respect to ZF–ITG nonlinear interactions. This
nonlinear ETG–ITG symmetry breaking [8,9] is due to the different ion and electron dynamic
responses to ZFs (see section 3).

The qualitative features of the saturated ETG spectrum, as expected from the nonlinear
toroidal coupling paradigm, are discussed in section 4, and concluding remarks are given in
section 5.

2. Nonlinear toroidal coupling and ETG spectral transfer equations

Assume a right-handed toroidal flux coordinate system (r, ϑ, ζ ) with straight field lines such
that (B · ∇ζ )/(B · ∇ϑ) = q(r). Consider also a long wavelength linear ETG unstable
spectrum, characterized by high toroidal mode numbers, n � 1 and kϑρe = O(n−1/4), and by
typical wave-vector spectral width �kϑ/kϑ = O(n−1/2). Here, kϑ stands for the ETG poloidal
wave-vector, while ρe indicates the electron Larmor radius. Since the ETG frequency has
an approximately linear dependence on the mode number, the typical frequency mismatch is
�ω/ω = O(n−1/2). It has been shown in [1, 2], with the present wavelength and frequency
ordering and assuming proximity to marginal stability, that the normalized linear growth rate is
(γ /ω) = O(kϑρe) = O(n−1/4). The nonlinear electron gyrokinetic equation [10] can then be
solved in the fluid limit and the ETG quasi-neutrality condition can be cast into the following
form,

∂tLkδφk = c

2B
αeρ

2
e

∑
k′

+k′′=k

b · (
k′′

⊥ × k′
⊥
) (

k′′2
⊥ − k′2

⊥
)
δφk′δφk′′ , (1)

where the ion response is taken to be adiabatic [1, 2], Lk is the linear ETG wave-operator,
αe = 1+τ(1+ηe)/[(3τ−1)Ln/R+1/2] [4], τ = Te/Ti, ηe = (∂ ln Te/∂ ln ne), L−1

n = −∂r ln ne

and R is the torus major radius. More precisely, Lk is given by

Lk = 1 + τ + (Te/ene)δφ
−1
k 〈J0(k⊥v⊥/ωce)δg

linear
ke 〉, (2)

where angular brackets indicate velocity space integration, J0 is the Bessel function, ωce is
the electron cyclotron frequency and δglinear

ke is the linearized nonadiabatic electron response
to ETG fluctuations, having separated, as usual, the adiabatic part in the fluctuating electron
distribution function:

δFke = (eδφk/Te)F0e + exp(−ik⊥ · v × b/ωce)δgke. (3)

Note that assuming |�ω/ω| ≈ |�kϑ/kϑ | � |γ /ω| is equivalent to considering the spectrum
of modes for which the linear growth rate is not significantly degraded from its maximum
value, consistent with the initial value approach of nonlinear gyrokinetic codes.

The nonlinear toroidal coupling paradigm is based on the interaction of two different
ETG toroidal modes and generating preferentially a low frequency, low toroidal mode number
quasi-mode with n
 = O(n1/2) [1, 2]. The reason for this ordering is that the typical linear
wave-vector spectral width is �kϑ/kϑ = O(n−1/2). The generation of the high frequency, high
toroidal mode number wave is less efficient due to the higher intrinsic inertia [1, 2]. Three-
wave resonant coupling is also inefficient, since the ETG frequency has an approximately
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linear dependence on the mode number; thus, the frequency mismatch �ω/ω = O(n−1/2) is
much smaller than (γ /ω) = O(kϑρe) = O(n−1/4) and the low frequency, low toroidal mode
number wave behaves as a quasi-mode [1,2]. In summary, the ETG fluctuations are composed
of two plasmon distributions: one of the high-n (n = O(102)) unstable or weakly damped
ETG modes and one of the low-n
 forced meso-scale quasi-modes. While n
 = O(n1/2) [1,2]
gives the typical wavelength ordering of the quasi-mode spectrum, the maximum value of
n
, i.e. n
 � n
m, is set by the forced nature of the quasi-modes. Thus, using ω ∝ n, n
m

is set by the condition γ � ω
 	 (n
/n)ω, yielding n
m 	 (γ /ω)n = O(n3/4). Note
that numerical simulations show that the lower end of the linear ETG unstable spectrum
is at kϑρe ≈ 10−1 = O(n−1/2) [1, 2], i.e. that ETG are marginally stable at n � nMS, with
nMS = O(n3/4) ≈ n
m. In section 4, we demonstrate that this point has important consequences
for the shape of the saturated ETG spectrum. Efficient nonlinear mode coupling requires that
the localized radial mode structures of two ETG modes, typical of toroidal drift waves, have
significant overlap about the same rational surface. This requirement is equivalent to a selection
rule for nonlinear toroidal coupling. In fact, considering two ETG modes with mode numbers
(m0, n0) and (m1, n1) = (m0 − m
, n0 − n
), they are characterized by significant radial
overlap if and only if m0/n0 = (m0 − m
)/(n0 − n
) + O(n−1

0 n−1

 ) = m
/n
 + O(n−1

0 ),
i.e. if the ETG modes are localized near a low order rational surface, r0, where the safety
factor q(r0) = q0 = q
 + O(n−1

0 ). When this condition is satisfied, all modes with
(m0 + jm
, n0 + jn
) and j = 0, ±1, ±2, . . . but |j | � n
 = O(n

1/2
0 ) are characterized

by significant radial overlap. Thus, the selection rule for efficient nonlinear toroidal mode
coupling is equivalent to the coarse graining of the q-profile and imposes a lower bound for
n
 at nc.o. = O(n

1/2
0 ), essentially set by the value of q0. Furthermore, given n
, the quasi-mode

can be conceived as the incoherent superposition of the resulting action of the various relevant
ETG toroidal mode pairs, since the combined effect of, say, (m0, n0) × (m0 − m
, n0 − n
)

∗

and (m0 + 2m
, n0 + 2n
) × (m0 + m
, n0 + n
)
∗ tends to rapidly phase mix in the nonlinear

stage. Meanwhile, given two ETG modes with toroidal number n0 and n1, characterized by
significant overlap at r = r0 due to the condition m0/n0 = (m0 −m
)/(n0 −n
)+ O(n−1

0 n−1

 ),

all ≈ n
1/2
0 poloidal harmonics of the toroidal modes will also overlap across the radial region

where the modes are localized [11] (see equation (4)).
The ETG mode structures can be represented in the ballooning space as [12, 13]

δφk = e−inζAk(r, t)
∑
m

eimϑ�k(nq − m),

�k(nq − m) =
∫ +∞

−∞
ei(nq−m)θ �̂k(θ)dθ,

�̂k(θ) = 1

2π

∫ +∞

−∞
e−i(nq−m)θ�k(nq − m)d(nq),

(4)

where the radial envelopeAk(r, t) accounts for slow radial dependences on the scale≈ n−1/2Ln,
while the parallel mode structure �̂k(θ) describes fast radial variations on the ≈ (nq ′)−1 scale,
due to k‖ changes in a sheared magnetic field. As stated in section 1, our analysis stems
from the evidence of numerical simulation results [1, 2] suggesting that ETG saturation is
due to nonlinear toroidal mode coupling with a negligible effect on the radial wave envelope,
consistent with the weak ZF generation rate via modulational instability [3,4,9] (see section 3).
For this reason, we can neglect the Ak(r, t) variation on the ≈ n−1/2Ln scale and, similarly,
we can assume

δφ
 = e−in
ζ+im
ϑA
(t)

∫ +∞

−∞
ei(n0q−m0)θ �̂
(θ)dθ, (5)
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having neglected variations on the ≈ (n
q
′)−1 scale. Note that, with equation (5), we have

emphasized the fast radial dependences of δφ
 on scales ≈ (n0q
′)−1 and shorter, which

can be shown to dominate the nonlinear coupling, consistent with the nonlinear generation
mechanism of the quasi-modes [1, 2, 14]. Such fine radial structures justify the adiabatic
treatment of the ion response to low toroidal mode numbers, n
, and make it possible to use
the representation of equation (5), which is based only on the radial scale separation between
local fluctuations and their envelope. Meanwhile, they demonstrate that quasi-modes are
characterized by filamentary (non-ballooning) structures along the magnetic field lines, with
|qRk‖| = O(n−1/2), i.e. with an extremely long parallel wavelength.

The n
 quasi-mode can be thought of as the incoherent superposition of the nonlinear
toroidal coupling of (m0 + jm
, n0 + jn
)× (m0 + jm
 −m
, n0 + jn
 −n
)

∗ ETG mode pairs,
with j = 0, ±1, ±2, . . ., or, in short, (m0j , n0j )× (m1j , n1j )

∗. Thus, introducing the notation
ak(t)e−iωkt = (eAk/Te) and α̂e = αe|ωce|ρ4

e , the nonlinear equation for the n
 quasi-mode,
obtained from equation (1), becomes [1, 2, 9]

(−iω
 + ∂t )a
(t)L̂
�̂
(θ) = 2πα̂esθ
∑

j

∑
l

kϑ0j kϑ1j a0j (t)a
∗
1j (t)δ(θ − 2πl)

×
∫ +∞

−∞
(1 + s2η2)(k2

ϑ1j �̂0j (ηl)�̂
∗
1j (η) − k2

ϑ0j �̂0j (η)�̂∗
1j (ηl))dη, (6)

with L̂
 the ballooning space representation of the linear ETG wave-operator [1,2], s = r0q
′
0/q0

the magnetic shear, ηl = η − 2πl and the ETG parallel mode structures considered by us as
characterized by a given parity for up–down symmetric equilibria. Furthermore, we have
neglected variations on the ≈ (n
q

′)−1 scale, consistent with previous discussions, and have
used the fact that the ETG frequency has an approximately linear dependence on the mode
number. Note that the l-summation in equation (6) accounts for the rapidly changing radial
structure of the quasi-modes on scales shorter than ≈ (n0q

′)−1. In equation (6), we have
assumed the following representation,

(e/Te)δφ0j = e−iω0j t−in0j ζ+im0j ϑa0j (t)
∑

h

eihϑ�0j (n0j q − m0j − h),

(e/Te)δφ1j = e−iω1j t−in1j ζ+im1j ϑa1j (t)
∑

h

eihϑ�1j (n1j q − m1j − h),
(7)

for the (m0j , n0j ) and (m1j , n1j ) ETG modes, consistent with equation (4), with ω
 =
ω0j−ω1j . Given equation (6), the quasi-mode structure in ballooning space can be conveniently
represented as superposition of partial quasi-modes,

a
�̂
(θ) =
∑

j

a
j �̂
j (θ) (8)

with

L̂
�̂
j (θ) = πτ

k
1/2
ϑ0j k

1/2
ϑ1j kϑ


∑
l

2πl δ(θ − 2πl)

∫ +∞

−∞
(1 + s2η2)

×
(
k2
ϑ1j �̂0j (ηl)�̂

∗
1j (η) − k2

ϑ0j �̂0j (η)�̂∗
1j (ηl)

)
dη (9)

and [1, 2]

∂ta
j (t) = 2s
α̂e

τ
k

3/2
ϑ0j k

3/2
ϑ1j kϑ
a0j (t)a

∗
1j (t) (10)
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since |ω−1

 ∂t | � 1 within the frequency ordering adopted here. Considering L̂
 	 τ , each of

the partial quasi-modes feeds back on the primary ETG modes as follows:

(−iω0j + ∂t )L̂0a0j (t)�̂0j (θ) = −sπα̂ea1j (t)a
j (t)
k

1/2
ϑ0j k

1/2
ϑ1j

kϑ


∑
l

4π2l2

×�̂1j (θ − 2πl)
[
k2
ϑ1j + s2k2

ϑ1j (θ − 2πl)2 − 4π2l2s2k2
ϑ0j

]
×

∫ +∞

−∞
(1 + s2η2)

(
k2
ϑ1j �̂0j (ηl)�̂

∗
1j (η) − k2

ϑ0j �̂0j (η)�̂∗
1j (ηl)

)
dη

+sπα̂ea0j+1(t)a
∗

j+1(t)

k
1/2
ϑ0j k

1/2
ϑ0j+1

kϑ


∑
l

4π2l2�̂0j+1(θ + 2πl)

× [
k2
ϑ0j+1 + s2k2

ϑ0j+1(θ + 2πl)2 − 4π2l2s2k2
ϑ0j

] ∫ +∞

−∞
(1 + s2η2)

×
(
k2
ϑ0j �̂

∗
0j+1(ηl)�̂0j (η) − k2

ϑ0j+1�̂
∗
0j+1(η)�̂0j (ηl)

)
dη. (11)

Projecting on �̂0j (θ), we easily obtain

(∂t − γ0j )a0j (t) = − sπα̂e/τ∫ ∞
−∞ |�̂0j (θ)|2dθ

a0j−1(t)a
j (t)
k

1/2
ϑ0j k

1/2
ϑ0j−1

kϑ


∑
l

4π2l2

× (
k2
ϑ0j−1D

∗
0j,l − 4π2l2s2k2

ϑ0jE
∗
0j,l

) (
k2
ϑ0j−1C0j,l − k2

ϑ0jD0j,l

)

+
sπα̂e/τ∫ ∞

−∞ |�̂0j (θ)|2dθ
a0j+1(t)a

∗

j+1(t)

k
1/2
ϑ0j k

1/2
ϑ0j+1

kϑ


∑
l

4π2l2

× (
k2
ϑ0j+1D0j+1,l − 4π2l2s2k2

ϑ0jE0j+1,l

)
× (

k2
ϑ0jC

∗
0j+1,l − k2

ϑ0j+1D
∗
0j+1,l

)
, (12)

where γ0j is the linear growth rate of the (m0 + jm
, n0 + jn
) ETG mode, with j =
0, ±1, ±2, . . . ,

C0j,l =
∫ ∞

−∞
(1 + s2θ2)�̂0j (θl)�̂

∗
0j−1(θ)dθ,

D0j,l =
∫ ∞

−∞
(1 + s2θ2)�̂0j (θ)�̂∗

0j−1(θl)dθ,

E0j,l =
∫ ∞

−∞
�̂0j (θl)�̂

∗
0j−1(θ)dθ,

(13)

are structure constants, and we have used the fact that ω0j ∂ω0j
D(ω0j ) 	 τ , with

D(ω0j ) =
(∫ ∞

−∞
|�̂0j (θ)|2dθ

)−1 ∫ ∞

−∞
�̂∗

0j (θ)L̂0�̂0j (θ)dθ. (14)

Equations (10) and (12) govern the nonlinear spectral transfer for ETG, due to nonlinear toroidal
mode coupling. They are already in a fairly simple form and could be taken as a nonlinear
ordinary differential equation system to solve for ETG and quasi-mode amplitudes, at least
numerically. We can, however, further simplify the structure of these equations using the fact
that, typically, n
 � |γ /ω|n0, i.e. by taking the continuum limit, and neglecting the weak
variability of the parallel mode structure, �̂0j (θ), with the mode number. Furthermore we
assume that �̂0j (θ) is nearly real, consistent with |γ /ω| � 1. Note that the latter assumption
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is equivalent to neglecting the nonlinear frequency shift, which is instead accounted for in
equation (12). In this way, equation (12) becomes [1, 2]

(∂t − 2γ0j + 2γNLj )I0j + ∂n0j
(vn0j

I0j ) = 0, (15)

where I0j = ā2
0j /2, a0j = eiϕ0j ā0j , a
j = eiϕ
j ā
j , ϕ
j = ϕ0j − ϕ0j−1, kϑ0j = n0j q0/r0 and

vn0j
= −4πsα̂e/τ

‖�̂0j‖2
k4
ϑ0j n


∑
l

4π2l2(4π2l2s2E0j,l − C0j,l)C0j,l ā
j ,

γNLj = 4πsα̂e/τ

‖�̂0j‖2
k3
ϑ0j kϑ


∑
l

4π2l2(4π2l2s2E0j,l + C0j,l)C0j,l ā
j

(16)

with ‖�̂0j‖2 = ∫ ∞
−∞ |�̂0j (θ)|2dθ . Note that, here, we have considered C0j,l 	 D0j,l and

E0j,l as being real, consistent with the present assumptions. Meanwhile, equation (10) can be
rewritten as

(∂t + γ
j )ā
j = 4s(α̂e/τ)k3
ϑ0j kϑ
I0j . (17)

Here, with respect to equation (10), we have considered a finite quasi-mode damping γ
j .
Equations (15) and (17) can be combined into the energy conservation,

(∂t + 2γ
j )I
j + (∂t − 2γ0j )I0j + ∂n0j
(vn0j

I0j ) = 0 (18)

with

I
j = 2π‖�̂0j‖−2(ā2

j /2)

∑
l

4π2l2(4π2l2s2E0j,l + C0j,l)C0j,l . (19)

In contrast to equations (10) and (12), (15) and (17) are not characterized by a cut-off at
large quasi-mode toroidal numbers, and the nonlinear coupling coefficients increase linearly
with n
. This is a by-product of the continuum limit, based on n
 � |γ /ω|n0, and must
be kept in mind when using these simplified equations. In the early nonlinear phase, the
dominant effect of nonlinear toroidal mode coupling is to produce an inverse cascade of
the ETG spectrum, with the quasi-modes acting as mediators but scarcely contributing to the
energy balance [1, 2]. The reason is that the typical width of the ETG spectrum in this phase
is �n/n0j � |γ /ω|, i.e. ∂n0j

≈ �n−1 � O(n
−3/4
0j ), and the nonlinear damping term can

be neglected in equation (15) for sufficiently short times, as assumed in [1, 2]. On longer
time scales, the energy content of quasi-modes is important for ensuring energy conservation,
as clearly expressed in equation (18). Note, also, that equations (15) to (19) consider the
incoherent effect of all partial quasi-modes with one single n
 value (see equation (8)), due to
the random phase approximation. However, scattering off a given partial quasi-mode generates
secondary ETG modes, as shown in equation (12). Thus, the ETG component of the fluctuation
spectrum is composed of both spontaneous and stimulated plasmons: the former are due to
the usual linear excitation and the latter correspond to secondary ETG mode generation via
scattering off quasi modes, as in the coherent process in laser light emission. For this reason,
we must account for an effective number of coherent states, Nc
 = νc
�n/n
, in the partial
quasi-mode decomposition of equation (8), where (nc.o./�n) � νc
 � 1, the lower/upper
bounds corresponding, respectively, to the fully incoherent/coherent cases. Furthermore,
we must consider the simultaneous effect of all possible n
 quasi-modes, whose density
of states is σ
 = (�n/n
) (�n < n
m, see discussion following equation (3)). Rather
than rewriting equations (15) to (19) to account for these facts, we will simply assume an
implicit

∑
n


	 (1/2)
∫ �n

nc.o.
Nc
σ
n

−1

 dn
 = (νc
/2)�n2

∫ �n

nc.o.
n−3


 dn
 on the right-hand side in
equation (16) and consider

∑
n


(∂t + 2γ
j )I
j rather than (∂t + 2γ
j )I
j in equation (18).
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An important implication of equations (15) and (17), with the expression of nonlinear
coupling coefficients given in equation (16) in terms of the structure constants of equation (13),
is that nonlinear toroidal coupling crucially depends on the toroidal nature of the plasma
equilibrium via the parallel mode structure. A fundamental result is that nonlinear interactions
are maximized for moderately ballooning mode structures: for strongly ballooning modes,
nonlinear couplings become weaker due to the decreasing overlap of mode structures
in ballooning space; conversely, for weakly ballooning modes, it is the inverse cascade
characteristic rate which is reduced. The inverse cascade process is also regulated by the
magnetic shear. In fact, equation (16) shows that cascading towards a longer wavelength
is possible for finite s2 only. For vanishing magnetic shear, the nonlinear toroidal coupling
vanishes as well, and the present paradigm for ETG nonlinear dynamics is not applicable.
All these considerations can be put on a more quantitative basis by estimating the normalized
nonlinear coupling constant, defined as κ
j = ‖�̂0j‖−4 ∑

l 4π2l2s2(4π2l2s2E0j,l −C0j,l)C0j,l ,
for l = 1 and using equation (13), with a trial mode structure �̂0j = exp(−θ2/�θ2). We find

κ
j 	 4π2s2[4π2s2 − (1 + π2s2(1 + �θ2/4π2))]

×(1 + π2s2(1 + �θ2/4π2)) exp(−4π2/�θ2). (20)

3. Generation of ZFs

In this section, we demonstrate that spontaneous excitation of ZFs by modulational
instability [3, 4] of ETG turbulence occurs on a typically longer time scale than does the
inverse cascade due to nonlinear toroidal mode couplings, described in section 4, and, thus,
that it is a process consistently neglected therein. We strictly follow [4] and assume that one
coherent toroidal ETG mode δφ0, with toroidal mode number n0, interacts with a zonal scalar
potential δφz, generating sideband modes δφ+ ⇐ δφz × δφ0 and δφ− ⇐ δφz × δφ∗

0 . Due
to the large ion Larmor radius, the ion adiabatic response is a good assumption for both ZFs
and sidebands, which are, thus, described by equation (1). In the ballooning space, sideband
excitation by ZFs is described by

∂t L̂±�̂±(θ)a± = ∓α̂ekϑ0kz

[
k2
ϑ0(1 + s2θ2) − k2

z

]
az

(
a0�̂0(θ)

a∗
0�̂

∗
0(θ)

)
(21)

with the same notation as in section 2 and kz = kz∇r/|∇r| the ZF wave-vector. After
projecting on �̂0(θ), one finally obtains [9]

a± = ∓ α̂e

τ

kϑ0kz(〈〈k2
⊥0〉〉 − k2

z )

(�z + γd ∓ i�)
az

(
a0

a∗
0

)
. (22)

Here, 〈〈k2
⊥0〉〉 = k2

ϑ0

∫ ∞
−∞(1 + s2θ2)|�̂0|2dθ/

∫ ∞
−∞ |�̂0|2dθ , (−iωD)± 	 ω0∂ω0D(−iωz +

γd ∓ i�) 	 τ(�z + γd ∓ i�), γd is the sideband damping, ω± = ωz ± ω0, �z = −iωz

is the ZF modulational instability growth rate and � = (k2
z /2)(∂2D/∂k2

r )(∂D/∂ω0)
−1 	

ω0(k
2
z /2τ)(∂2D/∂k2

r ) [4]. Meanwhile, the evolution equation for the ZF amplitude is
straightforwardly obtained from equation (1) in the following form:

(∂t + γz)τaz = −2πα̂ekϑ0

∑
l

ei2πlnq(kz + 2πlnq ′)2
∫ ∞

−∞
�̂0(θ)�̂∗

0(θl)

×[(kz + 2πlnq ′ + 2nq ′θl)a
∗
0a+ − (kz + 2πlnq ′ − 2nq ′θ)a0a−]dθ. (23)

Here, τ on the left-hand side is the approximate value of the ETG-induced ZF polarizability and
γz is the ZF collisional damping [15,16], whereas the right-hand side includes both meso-scale
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(O(k−1
z )) variations of the zonal scalar potential, eδφz/Te = aze−iωzt , and fine radial scales

that trace back to the O[(nq ′)−1] structures of ETG and sidebands. Such fine radial structures
are inefficient in spontaneously exciting ZFs [4] (see also equations (22) and (25)); thus, we
may consider the spatial average of equation (23) and describe the meso-scale excitation of
ZF via [4, 9]

(∂t + γz)τaz = −2πα̂ekϑ0k
3
z‖�̂0‖2

(
a∗

0a+ − a0a−
)
. (24)

Equations (22) and (24) readily describe spontaneous ZF excitation by ETG turbulence and
clearly illustrate the crucial differences of this case with respect to the analogue of ZF excitation
by ITG [9]. More precisely, equation (22) shows that the sideband amplitude is weaker in the
ETG case than in the ITG case by a factor O(k2

⊥ρ2
e ) since the ETG sideband excitation by

ZFs is due to Hasegawa–Mima [17] nonlinear interactions (see equation (1)) rather than by
the E × B nonlinearity as in the ITG case [4]. Meanwhile, equation (24) indicates that the
ETG-induced ZF polarizability, 	 τ , is higher than in the ITG case by a factor O(k−2

⊥ ρ−2
e ). As

a result, the spontaneous ZF generation rate by ETG turbulence is reduced by at least O(k2
⊥ρ2

e )

with respect to the ITG case [9]. In both equations (22) and (24), the reason for different
sideband/ZF behaviours in the ETG and ITG cases is that ions respond adiabatically to ZF
modulations in ETG turbulence because of their large orbits, whereas electrons do not respond
at all to ZFs in ITG turbulence. Combining equation (22) and (24), the ZF modulational
instability growth rate, �z, is obtained as [4]

(�z + γz)

(�z + γd)
[(�z + γd)

2 + �2] = 4π
α̂2

e

τ 2
k2
ϑ0k

4
z (〈〈k2

⊥0〉〉 − k2
z )

∑
n0

‖�̂0‖2|a0|2, (25)

where
∑

n0
on the right-hand side accounts for the incoherent effect of all toroidal mode

numbers when computing the ZF growth rate and, by the same arguments as those following
equation (19) in section 2, can be estimated as

∑
n0

≈ �n/nc.o.. Thus, the fastest growing ZF
is characterized by k2

z = 2
3 〈〈k2

⊥0〉〉. For strong ZF excitation, �z � γz, γd, �, equation (25)
yields a linear �z scaling with the ETG amplitude, i.e.

�z 	 2π1/2(α̂e/τ)|kϑ0|k2
z (〈〈k2

⊥0〉〉 − k2
z )

1/2

( ∑
n0

‖�̂0‖2|a0|2
)1/2

, (26)

confirming the reduction by a factor O(k2
⊥ρ2

e ) with respect to the ITG case [4], as anticipated
above. However, this condition of strong ZF excitation is unlikely to occur, since the validity of
equation (26) would require, ceteris paribus, an ETG amplitude larger than the corresponding
ITG level by a factor O(k−2

⊥ ρ−2
e ). That �z � γz, γd, � is inconsistent with the present

ordering is readily verified. In fact �/ω0 ≈ k2
z /k2

ϑ0(ωd/ω0) ≈ γ0/ω0, with ωd the magnetic
drift frequency, and γd/ω0 ≈ kz/kϑ0(γ0/ω0) ≈ γ0/ω0. The applicability condition of
equation (26) is then (

∑
n0

|eδφ0/Te|2)1/2 � |γ0/ω0||kϑ0ρe|−4|ω0/ωce|, i.e. an unrealistically
high fluctuation level, not only in contrast with numerical simulations [1, 2] but conflicting
with the nonlinear gyrokinetic equation ordering itself [10]; thus, a more realistic regime to
consider in the ETG case is γd ≈ � � �z � γz, for which equation (25) yields

�z = 4π
α̂2

e

τ 2

γd

γ 2
d + �2

k2
ϑ0k

4
z (〈〈k2

⊥0〉〉 − k2
z )

∑
n0

‖�̂0‖2|a0|2. (27)

Therefore, the characteristic condition of ETG modulational instability is much weaker
than that of ITG turbulence and similar in nature to that of drift wave plasmons, with the
growth rate ∝ (eδφ0/Te)

2 [4]. Meanwhile, the fastest growing ZF is characterized by
1
3 〈〈k2

⊥0〉〉 � k2
z � 3

5 〈〈k2
⊥0〉〉.
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In order to derive the typical relative ordering of the ETG inverse cascade and
spontaneous ZF excitation, we must estimate the inverse cascade characteristic rate, τ−1

NL,c

from equation (15). In the early nonlinear phase, when I0j ∝ e2γ0j t , equation (17) gives
ā
j 	 2sα̂e/(τγ0j )k

3
ϑ0j kϑ
I0j . Substituting into equation (15) and summing on all quasi-

modes, with density of states σ
 = �n/n
 and an effective number of coherent states
Nc
 = νc
�n/n
 (see discussion following equation (19)), we have

τ−1
NL,c 	 4πs2α̂2

e

γ0j τ 2

∂

∂n0j

(
k8
ϑ0j κ
j I0j‖�̂0j‖2νc


∫ �n

nc.o.

�n2

n0j n


dn


)
, (28)

where the nonlinear coupling constant, κ
j , is given in equation (20) and above. Estimating
∂n0j

≈ �n−1, a comparison of equation (27) with equation (28) gives

τ−1
NL,c�

−1
z � νc
κ
j

(
nc.o.�n/n0j

)
ln(�n/nc.o.). (29)

For typical conditions, nc.o. � �n = O(n1/2) and νc
 = O(1), equation (29) suggests that there
should be a very weak residual dependence of τ−1

NL,c�
−1
z on n (or system size). Meanwhile, as

suggested by equation (20), we have, typically, κ
j � 1 and, hence, τNL,c�z � 10−1 with the
present ordering. Thus, we expect to observe ZF effects on ETG nonlinear dynamics on time
scales longer than those typical of the inverse spectral cascade, which dominates the saturation
process; consistent with numerical simulations that show a moderate radial modulation of the
ETG elongated eddies—the streamers—at the end of the longest simulation runs [2]. This
estimate may change for the fully incoherent case, νc
 ≈ (nc.o./�n) � 1, i.e. for moderate
nc.o., which implies q0 to be a very low order rational number, and/or for small shear, i.e. for
small κ
j , as shown in equation (20). Under such conditions, the role of ZF could be crucial
in the nonlinear ETG evolution on the inverse spectral cascade time scale.

4. ETG nonlinear saturation

In the discussion following equation (3), we emphasized that ETG fluctuations are composed
of two plasmon distributions: the high-n linearly driven ETG mode which becomes marginally
stable at n � nMS, with nMS = O(n

3/4
0 ) [1,2], and the low-n
 forced quasi-modes, characterized

by an upper cutoff at n
m 	 (γ /ω)n = O(n
3/4
0 ), i.e. nMS ≈ n
m. Here, n0 is the typical toroidal

mode number of the most unstable linear ETG. In the following, we argue that this point has
important consequences for the shape of the saturated ETG spectrum.

Given the proof (see section 3) that the ZF generation rate is much smaller than the
spectral transfer rate due to nonlinear toroidal couplings, the ETG saturation proceeds via
cascading of linearly unstable modes to longer wavelength and more weakly growing ETG
modes by scattering off the quasi-modes. Equation (15) predicts that the saturated ETG
spectrum peaks where the net nonlinear growth rate vanishes. Thus, the spectral maximum
must be located near nMS = O(n

3/4
0 ), i.e. kϑ,maxρe ≈ n

−1/2
0 = O(10−1), with a slight shift

towards shorter wavelengths due to the effect of nonlinear damping. Since kϑ,maxρe ≈ n
−1/2
0

for the high-n ETG plasmon distribution and the upper cutoff of the quasi-mode spectrum is
at n
m 	 (γ /ω)n0 = O(n

3/4
0 ), i.e. kϑ,
mρe ≈ n

−1/2
0 ≈ kϑ,maxρe, the two plasmon distributions

constituting the ETG fluctuation spectrum have significant overlap, and only one spectral peak
may be expected, corresponding to the high-n ETG plasmon distribution maximum.

Besides estimating the location of the ETG saturated spectrum peak, as predicted by
equation (15), we can also estimate its width. In fact, according to equation (17), when
the quasi-mode damping is very small, the quasi-mode amplitude can continue growing
even after the inverse cascade spectral transfer rate locally (in n-space) balances the linear
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growth rate. When this happens, the ETG spectrum is depleted because the inverse cascade
process pumps energy out faster than linear excitation pumps energy in a given kϑ . The
necessary condition for this is the (exponentially) weak quasi-mode damping, i.e. γ 	
(γ /ω)(n/n0)ω0 � (γ /ω)−1|k‖
|ve 	 (γ /ω)−1(n
/n)|k‖|ve. Thus, we expect that the large kϑ

linear ETG spectrum, with k2
ϑ/k2

ϑ0 � (γ /ω)−2(n
/n0)(|k‖|ve/|ω0|) ≈ (|k‖|ve/|ω0|) ≈ n
−1/4
0 ,

is significantly depleted.
The dynamics of nonlinear ETG saturation and the qualitative features of the ETG saturated

spectrum, as outlined in this section, are consistent with the picture of [2] and is summarized
in figure 1 therein. Numerical solutions of equations (15) to (17), in principle, would allow us
to exactly compute the ETG spectrum at saturation and its dynamic formation. However, this
is out of the scope of the present work. In future studies, we will also examine the potentially
important role of the nonlinearly generated (n, m) = (0, 1) quasi-mode, which may modify
the ETG growth/damping rate by altering the potential well structure parallel to the magnetic
field line.

5. Discussion and Conclusions

The different nonlinear dynamics of ETG and ITG turbulence are essentially due to the
different responses of, respectively, ions and electrons to ZF fluctuations. Drift wave–ZF
interactions regulate the ITG nonlinear dynamics, whereas the nonlocal inverse spectral cascade
via scattering off driven quasi-modes determines the ETG saturation [1,2]. However, both ZF
spontaneous generation and inverse cascading due to nonlinear toroidal coupling are dynamic
phenomena of ETG, ITG and, more generally, drift wave turbulence, which may take place
on different nonlinear time scales. In fact, on long time scales the ITG saturated spectrum is
characterized by a peak downshift towards longer wavelengths, and the ETG modes show a
radial modulation of the extended streamer structures by the ZF [2]. The theoretical framework
developed in this work, under fairly general assumptions, is consistent with these observations
based on numerical simulation results [1, 2]. The detailed nature of the nonlinear toroidal
mode-coupling process is shown to depend critically on the ballooning-mode structures in
toroidal geometries and, as such, represents a new paradigm for the spectral cascade of plasma
turbulence in toroidal systems.
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