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Abstract. The present work addresses the issue of identifying the major non-linear physics processes

which may regulate drift and drift-Alfvén turbulence using a weak turbulence approach. Within this

framework, on the basis of the non-linear gyrokinetic equation for both electrons and ions, an analytic

theory is presented for non-linear zonal dynamics described in terms of two axisymmetric potentials,

δφz and δA‖z, which spatially depend only on a (magnetic) flux co-ordinate. Spontaneous excitation of

zonal flows by electrostatic drift microinstabilities is demonstrated both analytically and by direct 3-D

gyrokinetic simulations. Direct comparisons indicate good agreement between analytic expressions of

the zonal flow growth rate and numerical simulation results for ion temperature gradient driven modes.

Analogously, it is shown that zonal flows may be spontaneously excited by drift-Alfvén turbulence, in

the form of modulational instability of the radial envelope of the mode as well, whereas in general,

excitations of zonal currents are possible but have little feedback on the turbulence itself.

1. Introduction

In recent years, there has been increasing atten-
tion devoted to exploring the non-linear dynamics
of zonal flow [1] associated with electrostatic drift
type turbulence [2–4]. On the other hand, despite it
being well known how electrostatic drift modes cou-
ple to the electromagnetic shear Alfvén wave as the
plasma β (or R0β

′) increases [5–7], little effort has
been devoted so far to investigating the non-linear
zonal dynamics of drift-Alfvén turbulence.

The present work addresses the issue of identi-
fying the major non-linear physics processes which
may regulate drift and drift-Alfvén turbulence using
a weak turbulence approach. Within this framework,
on the basis of the non-linear gyrokinetic equation [8]
for both electrons and ions, we present an analytic
theory for non-linear zonal dynamics described in
terms of two axisymmetric potentials, δφz and δA‖z,
which spatially depend only on a (magnetic) flux co-
ordinate. Physically δφz is associated with zonal flow
formation, while δA‖z corresponds to zonal currents
δj‖z = −(c/4π)∇2

⊥δA‖z . The introduction of a zonal
vector potential, δA‖z , is one of the characteristic
differences of the electromagnetic with respect to the
electrostatic case.

Zonal potentials are characterized by time varia-
tions on typical scales which are long compared with
those characteristic of the drift-Alfvén instabilities.
This specific ordering of timescales, which formally
requires proximity to the marginal stability such that
the linear growth rate is smaller than the mode fre-
quency, will be exploited for explicitly manipulat-
ing formal expressions in the theoretical analysis. In
contrast to other approaches, however, which also
assume slow radial variations of the zonal fields (k−1

z )
with respect to the typical spatial scale of the back-
ground turbulence (k−1

r ), we generally take kz ≈ kr,
although we still assume |∂rkz/k2

z | � 1 for consis-
tency of our eikonal approach. In this respect our
work is the generalization of Ref. [9], which demon-
strated that zonal flows can be spontaneously excited
by electrostatic drift turbulence and that these are
characterized by kz ≈ kr (Fig. 1). In the present
work, we show that zonal flows in toroidal equilib-
ria can be spontaneously excited via modulations of
the radial structure (envelope) of a single-n coher-
ent drift wave, with n the toroidal mode number.
In this framework, the turbulent state and the non-
linear couplings among different n’s will be mani-
fest only via zonal dynamics. Similarly to Ref. [9],
the present theory is strictly applicable to toroidal
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Figure 1. (a) Analytic prediction of zonal flow growth

rate (normalized to the linear growth rate γ0) versus

mode amplitude (solid line) compared with gyrokinetic

simulation results. (b) Zonal flow growth rate versus

θ0 = kz/nq
′, for fixed mode amplitude. From Ref. [9].

plasma equilibria, where poloidal asymmetry forces
each mode to be (at least in the linear limit) the
superposition of many poloidal harmonics m, char-
acterized by the same n. In this respect, the present
theoretical analysis is a systematic treatment of the
radial mode structure (envelope) of zonal fields and
drift turbulence in the general electromagnetic case,
including slow time evolutions and accounting for lin-
ear (toroidal) and non-linear mode couplings on the
same footing. More specifically, we demonstrate that
zonal flows (δφz) are due to charge separation effects
associated with both finite ion Larmor radius and
finite ion orbit width effects (magnetic curvature),
whereas zonal currents (δA‖z) are due to parallel
electron pressure imbalance (cf. Ref. [10]).

Spontaneous excitation of zonal flows by electro-
static drift microinstabilities is demonstrated both
analytically and by direct 3-D gyrokinetic simula-
tions [9]. Direct comparisons indicate good agree-
ment between analytic expressions of the zonal flow
growth rate and numerical simulation results for ion

temperature gradient (ITG) modes. Analogously, we
show that zonal flows may be spontaneously excited
by drift-Alfvén turbulence, in the form of modula-
tional instability of the radial envelope of the mode
as well. From the analytic expression for the growth
rate of the spontaneously excited zonal flows (δφz)
we show how no flow generation is expected for a
pure shear Alfvén wave, owing to the peculiar nature
of the Alfvénic state. Meanwhile we also demonstrate
that, in general, zonal currents are also excited but
they have negligible effect on the turbulence itself.
The general results obtained within this theoretical
model are also applied to Alfvénic oscillations, such
as the kinetic Alfvén waves and the more recently
discussed Alfvén ITG (AITG) [6] mode.

2. Theoretical model

Here we strictly follow Ref. [9] and assume a
low β (β = 8πp/B2) toroidal equilibrium with major
radius R0 and minor radius a, with typically R0/a =
1/ε � 1. For simplicity we also take the case of
shifted circular magnetic flux surfaces. In this case
we can describe drift wave dynamics in terms of two
scalar fields: the scalar potential δφ and the parallel
vector potential δA‖ fluctuations. For both fluctu-
ating fields, as stated in Section 1, we describe the
non-linear dynamic evolution in terms of a four mode
coupling scheme, i.e. each electromagnetic fluctua-
tion is taken to be coherent and composed of a single
n 6= 0 drift wave (δφd, δA‖d) and a zonal perturba-
tion (δφz , δA‖z). For example, for scalar potential
fluctuations we take

δφd = δφ0 + δφ+ + δφ− (1a)

δφ0 = ei
R
nθkdq+inϕ

∑
m

e−imϑφ0(nq −m) + c.c. (1b)

δφ± =
(

ei
R
nθkdq

e−i
R
nθ∗kdq

)
e±inϕ+i

R
kzdr

×
∑
m

e∓imϑφ±(nq −m) + c.c. (1c)

δφz = ei
R
kzdrφz + c.c. (1d)

where (r, ϕ, ϑ) are toroidal co-ordinates, and an
analogue decomposition is assumed for fluctuating
parallel vector potentials. Here θk is the eikonal
describing the radial structure of the drift wave radial
envelope and q is the safety factor. Thus Eqs (1) sug-
gest that zonal fields may actually be considered as
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radial modulations of the drift wave envelope, while
the (±) modes are simply upper and lower sidebands
due to zonal field modulations of the drift wave [9].
Furthermore, we have adopted the convention that,
in the expressions involving the ± sidebands, the first
row in a two component array will refer to the +
while the second row will refer to the − sideband.
The same notation will be used throughout.

We first derive non-linear equations for zonal
fields from the quasi-neutrality condition and parallel
Ampère’s law. Here we only report the final results
of such derivations in the small ion Larmor radius
(ρLi) limit; details will be given elsewhere. Contrary
to the electrostatic limit, where the electron response
to an n 6= 0 perturbation is adiabatic, and thus only
ions contribute to the non-linear dynamics, electron
non-linearities are important in the general electro-
magnetic case. Assuming k2

⊥ρ2
Li � 1, the non-linear

coupling coefficients are formally of the Hasegawa–
Mima type and the quasi-neutrality condition reads

∂tχizδφz =
c

B
kϑkzk

2
zρ

2
Li

[(
α0 −

∣∣∣∣k‖vAω0

∣∣∣∣2
)
〈〈|Ψ0|2〉〉

+ 2α0 Re〈〈(Φ0−Ψ0)∗Ψ0〉〉

+ α0 〈〈|Φ0−Ψ0|2〉〉
]
(A∗0A+−A0A−). (2)

Here we have assumed δφ0 ≈ exp(−iω0t), kϑ ≡ m/r,
ρ2

Li = (Ti/mi)/ω2
ci, ωci is the ion cyclotron frequency

and vA ≡ B/
√

4πnmi is the Alfvén speed. We also
have assumed one ion species only, with unit electric
charge e and density n, and introduced the notations
χiz ' 1.6q2ε−1/2k2

zρ
2
Li [11], α0 ≡ 1 + δP⊥i0/(neδφ0),

b ·∇δψ ≡ −(1/c)∂tδA‖, Φ0 indicates the symmet-
ric Fourier transform into ballooning space of φ0 in
Eq. (1) and similar notations are used for the other
scalar fields. Furthermore, we have omitted for sim-
plicity collisional damping of δφz [12], 〈〈. . .〉〉 stands
for integration over ballooning space, |k‖|2〈〈|Ψ0|2〉〉 ≡
〈〈|∂θΨ0/qR0|2〉〉, θ is the ‘angle-like’ co-ordinate in
ballooning space, and A0 and A± indicate the ampli-
tude of radial envelopes of the drift wave and side-
bands at the current radial position. Similarly, from
the parallel Ampère’s law we obtain

∂tδA‖z =
c

B
kϑkzk

2
zδ

2
e

〈〈
Re
(

k‖c

ω0
(Φ0 −Ψ0)∗Ψ0

)〉〉
× (A∗0A+ −A0A−). (3)

Here the presence of δ2
e = c2/ω2

pe is a consequence
of the strong shielding effect of parallel electron cur-
rent on the electron collisionless skin depth. Further-
more, the forced response in δA‖z has been neglected

since it is of order (ωz/ω0)(k2
zδ

2
e)
−1(k2

⊥ρ2
Li)
−1 with

respect to the spontaneously excited component of
Eq. (3). A direct comparison of Eqs (2) and (3) indi-
cates that both zonal fields may be spontaneously
excited except for a pure shear Alfvén wave, for
which ω2

0 = k2
‖v

2
A, α0 = 1 and Φ0 = Ψ0. In gen-

eral, however, zonal flows can be efficiently excited
via δφz , whereas zonal currents (or poloidal mag-
netic fields) are strongly reduced because of electron
shielding on scale lengths larger that δe. We also note
that, typically,
ω0

k‖c
δA‖z ≈ k2

zδ
2
eδφz � δφz

which will make it possible to neglect the effect of
δA‖z below.

The drift wave non-linear equations are the quasi-
neutrality condition

ne2

Ti

(
1 +

Ti
Te

)
δφk =

〈
eJ0(γ)δHi

〉
k
−
〈
eδHe

〉
k

(4)

and the vorticity equation

B ∂`

(
k2
⊥

∂`δψk
B

)
+

ω2

v2
A

k2
⊥
bi

[(
1− ω∗ni

ω

)
[1− Γ0(bi)]

− ω∗Ti
ω

bi[Γ0(bi)− Γ1(bi)]
]
δφk

=
4π

c2

∑
e,i

〈eωωdJ0δH〉k

+
b · (k′′⊥ × k′⊥)

cB
∂t(δA‖,k′∇2

⊥δA‖k′′)k

+
4π

c2
∂t

〈
e

c

B
b · (k′′⊥ × k′⊥)

× [J0(γ)J0(γ′)− J0(γ′′)]δLk′δHik′′

〉
k

. (5)

In Eqs (4) and (5), the subscript k stands for 0 or
± depending on whether the drift wave or its side-
bands are considered, simple angular brackets 〈. . .〉
denote velocity space integration, γ ≡ k⊥v⊥/ωci, J0

is the Bessel function of zero order, ∂` ≡ b · ∇,
bi = k2

⊥ρ2
Li , Γ0,1(bi) ≡ I0,1(bi) exp(−bi), ω∗ni and

ω∗Ti are the ion diamagnetic frequencies associated
with density and temperature gradients, respectively,
ωd is the magnetic drift frequency, k = k′ + k′′,
δLk ≡ δφk − (v‖/c)δA‖k and the fluctuating par-
ticle distribution functions have been decomposed in
adiabatic and non-adiabatic responses as

δF =
e

m
δφ

∂

∂v2/2
F0 +

∑
k⊥

exp(−ik⊥ · v × b/ωc)δHk.

(6)
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The non-adiabatic response of the particle distribu-
tion function, δH, is obtained from the non-linear
gyrokinetic equation [8]:

(
∂t + v‖∂` + iωd

)
k
δHk = i

e

m
QF0J0(γ)δLk

− c

B
b ·
(
k′′⊥ × k′⊥

)
J0(γ′)δLk′δHk′′ (7a)

QF0 = ωk
∂F0

∂v2/2
+ k · b̂×∇

ωc
F0. (7b)

In Eqs (7), the linear response ∝ QF0 and the ‘gen-
eralized’ E × B non-linearity (in the guiding cen-
tre moving frame δφ → δφ− (v‖/c)δA‖) are readily
recognized.

Equations (4) and (5) are further simplified when
we decompose the linear particle response to the fluc-
tuating fields as [13]

δH
LIN

= − e

m
J0(γ)

QF0

ω
δψ + δK (8)

where the linearized gyrokinetic equation for δK is
readily derived from Eq. (7a) and may be found in
Ref. [13]. It is then readily shown that the quasi-
neutrality condition, Eq. (4), can be cast into the
form

ne2

Ti

{(
1 +

Ti
Te

)
(δφ− δψ)k+

[(
1−ω∗ni

ω

)
[1−Γ0(bi)]

− ω∗Ti

ω
bi[Γ0(bi)− Γ1(bi)]

]}
δψk

−
∑
e,i

〈eJ0(γ)δK〉k = − i

ωk

〈
e

c

B
b · (k′′⊥ × k′⊥)

× [J0(γ)J0(γ′)− J0(γ′′)]δLk′δHik′′

〉
k

− i

ωk

〈
e

c

B
b · (k′′⊥×k′⊥)δφk′δHek′′

〉
k
− 〈eδHNL

e 〉k

(9)

where δH
NL

e indicates the non-linear non-adiabatic
electron response only, which vanishes in the electro-
static limit, as stated above. In Eq. (9), the non-
linear ion response has been computed assuming
|k‖vthi |, |ωdi| � |ω0|, vthi =

√
Ti/mi being the ion

thermal speed.
Assuming now k2

⊥ρ2
Li � 1, consistently with

Eqs (2) and (3), and introducing the notation

δK = δ̂Kφ(δφ− δψ) + δ̂Kψδψ (10)

Eqs (5) and (9) for the sidebands in the ballooning
space can be rewritten as(
1 +

Ti
Te
−
∑
e,i

〈eJ0(γ)δ̂Kφ〉±
)

A±

(
Φ0 −Ψ0

Φ∗0 −Ψ∗0

)

+
[(

1− ω∗pi
ω

)
bi±−

∑
e,i

〈eJ0(γ)δ̂Kψ〉±
]
A±

(
Ψ0

Ψ∗0

)

= − i

ω0

c

B

Ti
Te

kϑkzδφz

[(
1 +

ω∗ni

ω0

Te
Ti

)(
A0Ψ0

A∗0Ψ∗0

)
−
(

A0(Φ0 −Ψ0)
A∗0(Φ

∗
0 −Ψ∗0)

)]
. (11)

{
∂θ

(
k2
⊥

k2
ϑ

∂θ

)
+

ω2

ω2
A

k2
⊥

k2
ϑ

[(
1− ω∗pi

ω

)
− 3

4
bi
(
1− ω∗pi

ω
− ω∗Ti

ω

)]
− 4πq2R2

0

k2
ϑc

2

∑
e,i

〈eωωdJ0δ̂Kψ〉
}
±

A±

(
Ψ0

Ψ∗0

)

+
{

ω2

ω2
A

k2
⊥

k2
ϑ

[(
1−ω∗pi

ω

)
− 3

4
bi
(
1− ω∗pi

ω
− ω∗Ti

ω

)]
− 4πq2R2

0

k2
ϑc

2

∑
e,i

〈eωωdJ0δ̂Kφ〉
}
±

A±

(
Φ0 −Ψ0

Φ∗0 −Ψ∗0

)

=
4πiω0

k2
ϑc

2

c

B

ne2

Ti
q2R2

0kϑkzδφzbi

(
A0Φ0

A∗0Φ∗0

)
. (12)

Equations (2), (11) and (12), together with Eq. (7a),
are the basis for our analytic investigations described
in the next section.

3. Some applications

In the electrostatic limit [9], Ψ0 → 0, we obtain
from Eq. (11)

DS±A± =
i

ω0

c

B

Ti
Te

kϑkzδφz

(
A0

A∗0

)
(13)

where

DS± =
〈〈(

1 +
Ti
Te
−
∑
e,i

〈eJ0(γ)δ̂Kφ〉±
)

×
(

Φ2
0

Φ∗20

)〉〉〈〈
×
(

Φ2
0

Φ∗20

)〉〉−1

(14)

and [9] DS± ' i(∂DS0r/∂ω0)(−i∆± Γz ± γd), ∆ =
(k2
z/2)(∂2DS0r/∂k2

r)/(∂DS0r/∂ω0) is the frequency
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mismatch, kr = nq′θk, Γz = −iωz and γd is the side-
band damping [9]. Substituting Eq. (13) into Eq. (2),
we readily obtain a non-linear dispersion relation for
Γz, which, in the |∆| � γd, γM limit, reads

Γz = −γd/2 +
(
γ2
M + γ2

d/4
)1/2

(15)

where γ2
M =(2α0ε

1/2/1.6q2)(Ti/Te)(ω0∂DS0r/∂ω0)−1

×k2
zρ

2
Lik

2
ϑv

2
thi〈〈|eA0Φ0/Ti|2〉〉. Including finite zonal

flow collisional damping into Eq. (2), νz '
(1.5ετii)−1 [12], would have produced a threshold
condition γ2

M ≥ νzγd on the modulational instability
growth rate Γz of Eq. (15). In Fig. 1, Γz as obtained
from Eq. (15) is shown to be in good agreement with
the results obtained by direct 3-D gyrokinetic sim-
ulations [9] of ITG modes, in which γd ' 1.5γ0, γ0

being the linear growth rate of the mode. Non-linear
equations for mode amplitudes have been recently
derived [9] and they demonstrate saturation of the
linearly unstable modes via coupling to the stable
envelope sidebands and oscillatory behaviours in the
drift wave intensity and zonal flows [9].

For electromagnetic modes, and more specifically
for Alfvénic type waves, we typically have |Φ0 −
Ψ0| � |Ψ0| in Eqs (11) and (12). In fact, assuming
k2
‖q

2R2
0 � 1 [6], we have from Eq. (11)(

Φ0 −Ψ0

Φ∗0 −Ψ∗0

)
A± ' −

(
(k2
‖v

2
A/ω2)bi

Ti/Te + ω∗ni/ω

)
±

(
Ψ0

Ψ∗0

)

×A± − i
c

B

kϑkz
ω0

δφz

(
A0Ψ0

A∗0Ψ
∗
0

)
(16)

where we recall that k2
‖, in the present treatment,

stands for an operator in the ballooning space.
Substituting back into Eq. (12), this yields [6]

LM±
(

Ψ0

Ψ∗0

)
A± = i

ω0

ω2
A

c

B
kϑkz

k2
⊥±
k2
ϑ

δφz

×
(
1 +

k2
‖v

2
A

ω2

)
±

(
A0Ψ0

A∗0Ψ
∗
0

)
(17)

LM± =

{
∂θ

(
k2
⊥

k2
ϑ

∂θ

)
+

ω2

ω2
A

k2
⊥

k2
ϑ

[(
1− ω∗pi

ω

)

×
(
1−

(k2
‖v

2
A/ω2)bi

Ti/Te+ω∗ni/ω

)
− 3

4
bi
(
1−ω∗pi

ω
−ω∗Ti

ω

)]

− 4πq2R2
0

k2
ϑc

2

(∑
e,i

〈eωωdJ0δ̂Kψ〉 −
(k2
‖v

2
A/ω2)bi

Ti/Te + ω∗ni/ω

×
∑
e,i

〈eωωdJ0δ̂Kφ〉
)}
±

. (18)

Equation (17) can be cast into the form

DM±A± = i
ω0

ω2
A

c

B
kϑkzδφz

(
1 +

K2
‖v

2
A

ω2

)
±

(
A0

A∗0

)
(19a)

DM± ≡
〈〈(

Ψ0

Ψ∗0

)
LM±

(
Ψ0

Ψ∗0

)〉〉〈〈
k2
⊥±
k2
ϑ

(
Ψ2

0

Ψ2∗
0

)〉〉−1

(19b)

K2
‖± ≡

〈〈(
Ψ0

Ψ∗0

)
k2
⊥±
k2
ϑ

k2
‖±

(
Ψ0

Ψ∗0

)〉〉

×
〈〈

k2
⊥±
k2
ϑ

(
Ψ2

0

Ψ2∗
0

)〉〉−1

. (19c)

From Eqs (19) and Eq. (2), it is possible to derive the
non-linear dispersion relation for Γz, similar to the
electrostatic case. Specifically, using DM− = D∗M+,
we obtain

Γz = 2k2
ϑρ

2
Li

k2
zv

2
thi

ω0

ω2
0

ω2
A

ε1/2

1.6q2

〈〈∣∣∣∣eA0Ψ0

Ti

∣∣∣∣2
〉〉

×
Im
[
DM+

(
1+K2

‖v
2
A/ω2

)
−

]
|DM+|2

[(
α0−

∣∣∣∣∣K
2
‖v

2
A

ω2
0

∣∣∣∣∣
)

− 2α0 Re

(
(K2
‖v

2
A/ω2)K2

⊥ρ2
Li

Ti/Te + ω∗ni/ω

)
±

]
(20a)

K2
‖+K2

⊥+ ≡
〈〈

Ψ∗0k
2
⊥+k2

‖+Ψ0

〉〉 〈〈
|Ψ0|2

〉〉−1
. (20b)

It is straightforward to further specialize Eqs (20) to
the case of the kinetic Alfvén wave (KAW), for which
DM = −q2R2

0K
2
‖+(ω2/ω2

A)(1−K2
⊥ρ2

Li(3/4+Te/Ti)).
In this case α0 = 1, and defining

γ̂2
M = 2k2

ϑρ
2
Lik

2
zv

2
thi

ε1/2

1.6q2

(
3
4
− Te

Ti

)
K2
⊥ρ2

Li

×
〈〈∣∣∣∣eA0Ψ0

Ti

∣∣∣∣2
〉〉

(21a)

∆̂ =
(

3
4

+
Te
Ti

)
k2
zρ

2
Li

ω0

2
(21b)

we obtain

Γz ,KAW ' γ̂M

√
1− ∆̂2/γ̂2

M . (22)

From Eqs (21) and (22) we see that zonal flows can
be spontaneously excited by KAWs and that, as in
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the electrostatic case, the growth rate Γz above the
threshold scales linearly with the wave amplitude.
However, the most important feature of KAWs is
that they spontaneously generate zonal flows in their
propagating region for Te < (3/4)Ti and in their cut-
off region for Te > (3/4)Ti.

Another application of Eqs (20) is to AITG modes
[6]. In this case, sufficiently close to the unstable
Alfvén continuum accumulation point, DM = Λ2 +
iΛδWf , where δWf is the MHD potential energy
associated with the mode and Λ2 is a generalized
inertia given by

Λ2 =
ω2

ω2
A

(
1−ω∗pi

ω

)
+ q2 ωωti

ω2
A

[(
1−ω∗ni

ω

)
F (ω/ωti)

− ω∗Ti

ω
G(ω/ωti)−

N2(ω/ωti)
D(ω/ωti)

]
(23)

and the functions F (x), G(x), N(x) and D(x),
with x = ω/ωti , ωti =

√
2vthi/(qR0), and using

the plasma dispersion function Z(x), are defined as
[6, 14]

F (x) = x(x2+ 3/2) + (x4+ x2+ 1/2)Z(x) (24a)

G(x) = x(x4+ x2+ 2) + (x6+ x4/2+ x2+ 3/4)Z(x)

(24b)

N(x) =
(
1− ω∗ni

ω

) [
x +

(
1/2 + x2

)
Z(x)

]
− ω∗Ti

ω

[
x
(
1/2 + x2

)
+
(
1/4 + x4

)
Z(x)

]
(24c)

D(x) =
(

1
x

)(
1 +

Ti
Te

)
+
(
1− ω∗ni

ω

)
Z(x)

− ω∗Ti

ω

[
x +

(
x2− 1/2

)
Z(x)

]
. (24d)

With the new definitions

γ̃2
M = 2k2

ϑρ
2
Li

(
k2
zv

2
thi

ω2
A∂ Re Λ2/∂ω2

0

)
ε1/2

1.6q2

×
(
1− ω∗pi

ω0
− ω2

A

ω2
0

Re Λ2

)(
1 +

ω2
A

ω2
0

Re Λ2

)

×
〈〈∣∣∣∣eA0Ψ0

Ti

∣∣∣∣2
〉〉

(25a)

∆̃ =
k2
z

2
∂2δW 2

f

∂k2
r

/
∂

∂ω0
Re Λ2 (25b)

the zonal flow growth rate induced by the AITG
mode is

Γz ,AITG = γ̃M

√
1− ∆̃2/γ̃2

M . (26)

As in the case of the KAW, we find a condition for
effective excitation of zonal flow by the AITG mode,
i.e. ω0 > ω∗pi , which is the typical case for a slightly
unstable AITG mode [14]. Above the threshold,
the AITG driven zonal flow growth rate also scales
linearly with the mode amplitude.

4. Conclusions

In the present work, we have demonstrated that
zonal flows may be spontaneously generated by a
variety of drift and drift-Alfvén turbulences and that
above their spontaneous excitation threshold their
growth rate typically scales linearly with the mode
amplitudes. In the electrostatic limit, good agree-
ment is shown between numerical results from 3-D
gyrokinetic simulations of the ITG and the obtained
analytic expression [9]. In the same limit, non-linear
equations for mode amplitudes have recently been
derived [9], and they demonstrate saturation of the
linearly unstable modes via coupling to the stable
envelope sidebands and, as a consequence, oscilla-
tory behaviours in the drift wave intensity and zonal
flows [9]. Similar behaviours can also be expected
in the general electromagnetic case, which will be
analysed in the near future.
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