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Excitation of zonal flow by drift waves in toroidal plasmas
Liu Chen
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An analytical dispersion relation is derived which shows that, in toroidal plasmas, zonal flows can
be spontaneously excited via modulations in the radial envelope of a single-n coherent drift wave,
with n the toroidal mode number. Predicted instability features are verified by three-dimensional
global gyrokinetic simulations of the ion-temperature-gradient mode. Nonlinear equations for mode
amplitudes demonstrate saturation of the linearly unstable pump wave and nonlinear oscillations of
the drift-wave intensity and zonal flows, with a parameter-dependent period doubling route to chaos.
© 2000 American Institute of Physics.@S1070-664X~00!01208-8#
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Recent three-dimensional~3-D! gyrokinetic1,2 and
gyrofluid3 simulations in toroidal plasmas have demonstra
that zonal flows4 play a crucial role in regulating the nonlin
ear evolution of electrostatic drift-wave instabilities such
the ion temperature gradient~ITG! modes and, as a conse
quence, the level of the anomalous ion thermal transp
Zonal flows correspond to potentials which spatially depe
only on the radiusr and contain temporal variations wit
time scales longer than that of the drift waves. Recent gy
kinetic simulations5 have shown that zonal flows could b
spontaneouslyexcited by ITG turbulence held at consta
level, suggesting parametric instability processes as the
eration mechanism. Diamondet al.6 have proposed the
modulational instability of drift-wave turbulence~‘‘plas-
mons’’! in a slab-geometry treatment. Those authors a
noted that unstable zonal flows can couple back to the d
waves and proposed a predator-prey model for the nonlin
self-regulation of the drift wave turbulence.

In the present letter, we show, both analytically and
direct 3-D gyrokinetic simulations, that zonal flows can
readily excited via the modulational instability of a singlen
coherent drift wave in toroidal plasmas, withn the toroidal
mode number. We note that our theory is strictly applica
to toroidal geometry. Specifically, the drift wave, while ha
ing only a singlen value, contains many poloidal harmonic
~m’s! which are toroidally coupled. Thus the modulation co
responds to that of the radial envelope describing the m
nitude of each poloidal harmonic. In this respect the zo
flow can be regarded as the radial envelope mode.

Consider a large aspect ratio (e5a/R!1) tokamak
3121070-664X/2000/7(8)/3129/4/$17.00
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plasma with the usual radial (r ), poloidal ~u!, and toroidal
~f! coordinates. HereR and a are, respectively, the majo
and minor radii. Electrostatic fluctuations are taken to
coherent and composed of a singlen (nÞ0) drift wave,dfd

and a zonal flow modedfz ; that is, dfd5f01df1

1df21c.c.,

f0~r ,t !5e2 i (nf1v0t)(
m

F0~m2nq!eimu, ~1!

df65ei (7nf2(vz6v0)t1Kzr )(
m

F6~m2nq!eimu, ~2!

and dfz5Fze
i (Kzr 2vzt)1c.c.. Thusf0 is the pump drift

wave andv0 its eigenmode frequency;df1 and df2 are,
respectively, the upper and lower sidebands produced by
modulation in the radial envelope due todfz at frequency
vz and radial wave numberKz . We have assumedn@1 and
adopted the ballooning mode representation7 in which Kz

5nq8u0 , q5rBf /RBu is the safety factor, and 0<u0<p is
the Bloch phase shift. The pump modef0 hasu050 ~i.e., a
flat radial envelope!, which is, for a givenn, usually the
linearly most unstable mode. On the other hand,df1 and
df2 haveu0Þ0, giving radial envelope modulations. Typ
cally they are linearly stable for moderate values ofu0 .3 We
are thus dealing with a four-wave coupling process amo
f0 , df1 , df2 , anddfz . Three wave parametric excita
tion of zonal flows can be shown to be rather ineffective d
to the frequency and wave number matching constraints

Since electrons are adiabatic for thenÞ0 drift waves,
only ions contribute to the nonlinear physics.dFz is then
9 © 2000 American Institute of Physics

yright, see http://ojps.aip.org/pop/popcpyrts.html.
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coupled toF0 anddf6 , and the nonlinear coupling coeffi
cient is formally of the Hasegawa–Mima type,8–10 i.e.,

~2 ivz1nz!x izFz5gK (
m

@a1F0* F12a2F0F2#L ,

~3!

where g5 (c/2B) a ir i
2kuKz , a15k0'

2 2k1'
2 , a25k0'

2

2k2'
2 , x iz.1.6e3/2Kz

2r i
2Bf

2 /Bu
2 ,11 nz5(1.5et i i )

21,12 k0'

5 ûku1 inq8 r̂ ]z , ku5nq/r 0 , r 0 refers to one referenc
mode surface,z5m2nq corresponds to the fast radial var
able,k6'5 r̂ Kz6k0' , and^A&5*21/2

1/2 Ad z is an averaging
with respect tor 0 , a i.dP0' /(NeF0)11 anddP0' is the
perturbed perpendicular pressure due toF0 . The detailed
expression fora i depends on the specific drift wave mod
and plasma parameters, e.g.,a i.11t1h it, h i

5d ln Ti /d ln N for the electron drift wave, anda i.t(1
1h i)/@(3t21)Ln /R11/2#11 for ITG in the fluid ion local
approximation.3 Here Ln

215d ln N/dr and t5Ti /Te . In de-
riving Eq. ~3! we have assumeduk'r i u,1 with r i the ion
gyroradius, uvzu,vGAM , and averaged over the geodes
acoustic mode.13

The nonlinear coupling ofdf6 to F0 and dFz can be
straightforwardly calculated using the nonlinear gyrokine
equation9,10 and the quasineutrality condition. We have, d
noting v15vz1v0 ,

L1F15v1F ~11t!F12~Ti /e!K E d3vJ0dGi 1
l L G

52 i ~c/B!kuKztF0~z!Fz , ~4!

wheredGi 1
l satisfies the linear gyrokinetic equation14,15

~v ib"“2 iv11 ik1'"vd!dGi 1
l 52hF1 ~5!

with h5(v12v* i)FMiJ0e/Ti and b5B0 /B0 , vd is the
magnetic “B0 and curvature drift,J05J0(k1'r i), v*
5v* in@11h i(v2/(2v i t

2 )23/2)#, v* in5kur i tv i t /Ln , and
FMi is the Maxwellian ion distribution withv i t the ion ther-
mal velocity. L15L(v1 ,k1' ,z) and L is just the linear
operator for the drift wave eigenmode. In particular,L0F0

5L(v0 ,k0' ,z)F050 with v0 the eigenmode frequency. I
deriving the nonlinear response in Eq.~4! we have assumed
fluid ions. Since Eq.~4! depends only onz we can solve it by
first Fourier transforming to the along-field-line balloonin
coordinateh. Letting F15A1F0(z) and F̂0(h) equal the
Fourier transform ofF0(z) we readily find

A152 ickuKztFz /BD1 , ~6!

where D1(v1 ,ku ,Kz)[^^F̂0* L̂1F̂0&&/^^uF̂0u2&&, with

^^A&&5*2`
` dh A, and L̂15L(v1 ,ûku1 r̂ (kuŝh1Kz),

2 i ]h) is the corresponding linear drift wave operator in t
h coordinate,ŝ5q8r /q the local shear.

Letting V15v(ku ,Kz) be the eigenfrequency for th
upper side band and noting thatuvzu,uV12v0u!v0 , D1

can then be approximated asD1.(]D0r /]v0)(vz1D
1 igd), whereD0r is the Hermitian part ofD0 , ]D0r /]v0

.t, D5v02V1r is the frequency mismatch, andgd

52V1 i is the sideband damping rate.
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Similar analysis can also be carrried out for the low
sideband. Thus we findF25A2F0(z),

A25 ickuKztFz /BD2 ~7!

and D25(]D0r /]v0)(vz2D1 igd). Here V15V2

5v(ku ,2Kz) due to the up–down symmetry. Substitutin
F65A6F0 into Eq. ~3! and noting that ^(muF0u2&
5*2`

` uF0u2dz5^^uF̂0u2&& we finally obtain the desired lin-
ear dispersion relation for the modulational instability

Gz1nz5gM
2 ~Gz1gd!/@D21~Gz1gd!2#, ~8!

where we have let 2 ivz5Gz and gM
2 5(a i /1.6e3/2)

3(BukucsKzrs /Bf)2^^ueF̂0 /Teu2&&. With appropriate a i

Eq. ~8! is valid for various branches of drift waves such
the electron drift wave or ITG. It can be solved forGz in two
limits. In the uDu,gd ,gM limit, we have

Gz52~gd1nz!/21@gM
2 1~gd2nz!

2/4#1/2. ~9!

Thus while the instability has a threshold atgM
2 .nzgd ,

strong growth withGz.gM only sets in whengM*gd/2. On
the other hand, forgM ,uDu.gd ,nz we have

Gz.gM~12D2/gM
2 !1/2. ~10!

Again, strong growth withGz.gM sets in whengM*uDu.
Note that forGz.gM}uKzrsuueF̂0 /Teu, the coherent modu-
lational instability is generally much stronger than that of t
drift wave ‘‘plasmons’’ with growth rate}ueF̂0 /Teu2. Fur-
thermore, uDu.Kz

2(]D0r /]k0'
2 )/2(]D0r /]v0).v0Kz

2rs
2(1

1t)/2, and gd generally increases withKzrs . Gz , for a
given uF̂0u, can then be expected to first increase withKzrs

but eventually decrease at largeKzrs . While the exact
(Kzrs)m at which Gz maximizes cannot be predicted, it i
general will increase with the pump wave amplitudeuF̂0u.
Thus far away from linear marginal stability one expec
strong linear instability, largeruF̂0u, and modulational insta-
bilities peaked around Bloch phase shiftsu0m;O(1), i.e.,
(Kzrs)m;kursŝ. That is, with strong linear drive the radia
scale lengths of zonal flows and drift wave envelopes sho
be on the order of a typical distance between adjacant m
rational surfaces.

The predicted modulational instability features ha
been observed in 3-D global gyrokinetic simulations of IT
modes using the gyrokinetic toroidal code.2 These nonlinear
simulations keep only a single toroidal modenÞ0 initially.
The starting fluctuation level is very low to allow linear ITG
eigenmode structure to be formed before nonlinear sat
tion. When the ITG mode grows to a desired amplitude,
external damping is applied so that the mode amplitude s
constant. Zonal flow with a single radial mode number
now self-consistently included. We observe exponen
growth of zonal flow until it reaches a high level where t
ITG mode is suppressed. The radial envelope modulation
the ITG mode correlates with the zonal flow radial structu
As shown in Fig. 1~A!, the growth rate of zonal flow with a
fixed radial mode number linearly depends on the ITG mo
amplitude. These results are for amplitudes which are sm
compared to saturation levels. At larger amplitude ITG no
linear effects appear. Analytical prediction of zonal flo
opyright, see http://ojps.aip.org/pop/popcpyrts.html.
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growth rate from the solution of Eq.~9! is shown by the solid
line in Fig. 1~A!. In the analytical calculation, the sideban
damping rate is estimated from simulations to begd

;1.5g0 including both intrinsic damping and externally a
plied damping, andg0 is the pump ITG intrinsic linear
growth rate. For a fixed ITG mode amplitude, measu
zonal flow growth rate increases linearly with radial mo
number~or u0! for small u0 and decreases for largeu0 , as
shown in Fig. 1~B!, consistent with theory.

We now consider the nonlinear evolution of this mod
lation instability. Asdfz and df6 exponentiate in ampli-
tude, they will nonlinearly couple and induce damping in t
pump wave amplitude. Replacingv0 by v01 i ] t , letting

^^ueF̂0 /Teu2&&5A0
2, and including the linear growth rateg0

the equation forA0(t) becomes

S d

dt
2g0DA052

cTe

eB

tkuKz

]D0r /]v0
~A2Fz1A1Fz* !.

~11!

Equations governingA1 , A25A1* , and Fz are given by
Eqs. ~3!, ~4!, and ~6! and noting that D6

. i ]D0r /]v0(d/dt7 iD1gd). Using dimensionless timet
5g0t and performing straightforward normalizations su
that A0}P, A1}SeiC(t), andFz}Z, we find

dP

dt
5P22ZScos~C!, ~12!

FIG. 1. Gyrokinetic simulation results of zonal flow growth rate~A! vs ITG
mode amplitude for fixedu0 , and~B! vs u0 for fixed ITG amplitude, nor-
malized to ITG growth,g0 . The line in~A! is the solution of Eq.~9!.
žžž÷~−−žý‘úêýžłÉýžłÉýžıŁ198.35.4.141. Redistribution subject to AIP copy
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dS

dt
52GdS1ZP cos~C!, ~13!

dZ

dt
52gzZ12PScos~C!, ~14!

dC

dt
5d2

PZ

S
sin~C!, ~15!

with Gd5gd /g0 , gz5nz /g0 , and d5D/g0 . These equa-
tions are similar to those for three-wave coupling,16 hence
we anticipate similar behavior, such as the existence o
stable attractor and a period doubling route to chaos.

Introduce an associated one-dimensional map by de
ing timestk at successive zeros ofdZ/dt. A numerical plot
of the values ofZk in steady state~after transients have die
away! is shown in Fig. 2 ford52, Gd52. Equations~12!–

FIG. 2. Values ofZk , d52, Gd52.

FIG. 3. Numerical frequencies, linear valuesv l ,g l , and dampingn near the
fixed point,d52, Gd52.
right, see http://ojps.aip.org/pop/popcpyrts.html.
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~15! have a fixed point attractor forgz&0.3. For 0.3&gz

&0.58 the attractor is a stable limit cycle with the boundi
values ofZ given by the two branches in Fig. 2. The initi
bifurcation of the stable fixed point into the limit cycle co
responds also to period doubling, as can be seen in the
of associated frequencies, Fig. 3. The two frequencies co
spond to a rapid increase inZ to the upper value followed by
a slow decay to the lower. Frequency, damping, and gro
about the fixed pointv l ,g l , obtained in the following, are
also shown. Apparent chaos sets in forgz*0.75.

The fixed point of Eqs.~12!–~15! is readily found to be
Z05A(d21Gd

2)/(2Gd), P05AgzZ0 , S05P0 /A2Gd, sinC0

5d/Ad21Gd
2. Linearizing Eqs.~12!–~15! about the fixed

point we find for the complex frequency

v42 ic3v31c2v22 ic1v1c050, ~16!

with c054gz(Gd
21d2), c15c0 /Gd , c25gzd

2/Gd2gzGd

2d2/Gd1Gd2Gd
22d2, c35122Gd2gz .

Destabilization of the fixed point is obtained by requ
ing that the frequency be real, givingc1c2c35c1

21c0c3
2 with

the frequency given byv252c1 /c3 . In Fig. 4 is shown the
domain in which the stable fixed point exists. The bounda
of the stable domain atgz50 are given byGd51/2 andGd

3

5d2(Gd11). For smallgz andv the real frequency and th
damping behave as v.AAgz, n.Bgz , with A
52A(Gd

21d2)/(Gd
21d22Gd1d2/Gd) and B52(d22Gd

3

1d4/Gd1d4/Gd
2)/(Gd

21d22Gd1d2/Gd)2. The ratio of
damping to frequency is shown in Fig. 3.

FIG. 4. Destabilization of the fixed point.
 20 Jul 2000 tožŸ@žžž˙žžž÷~−−žý‘úêýžłÉýžłÉýžıŁ198.35.4
lot
e-

th

s

Present turbulence simulations haveGd;1, with values
of gz and d placing them in the stable fixed point domai
The oscillations observed are thus probably nonlinear tr
sient decay to the fixed point, with the decay time mu
longer than the simulation time. The drift wave intensity
I d5P0

212S0
2. Assuming weak turbulence scaling ofx i

}I d , wherex i is the anomalous ion thermal transport coe
ficient, we find that in the stable domainx i}gz}n i i consis-
tent with the trend observed in simulations.5 In the future we
will explore the route to chaos with nonlinear simulatio
and examine its implications forx i . Finally, we note that,
assuming nonlinear interactions amongnÞ0 toroidal drift
modes are ignorable, the present results, obtained fo
single-n mode, can be readily generalized to a spectrum
multiple-n toroidal modes.
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