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Excitation of zonal flow by drift waves in toroidal plasmas
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An analytical dispersion relation is derived which shows that, in toroidal plasmas, zonal flows can

be spontaneously excited via modulations in the radial envelope of a sirggberent drift wave,

with n the toroidal mode number. Predicted instability features are verified by three-dimensional

global gyrokinetic simulations of the ion-temperature-gradient mode. Nonlinear equations for mode
amplitudes demonstrate saturation of the linearly unstable pump wave and nonlinear oscillations of
the drift-wave intensity and zonal flows, with a parameter-dependent period doubling route to chaos.
© 2000 American Institute of Physid$51070-664X00)01208-§

Recent three-dimensional3-D) gyrokineti¢> and  plasma with the usual radiat, poloidal (6), and toroidal
gyrofluid® simulations in toroidal plasmas have demonstrated #) coordinates. Her® and a are, respectively, the major
that zonal flow& play a crucial role in regulating the nonlin- and minor radii. Electrostatic fluctuations are taken to be
ear evolution of electrostatic drift-wave instabilities such ascoherent and composed of a singl¢n+0) drift wave, 5
the ion temperature gradiefiiTG) modes and, as a conse- and a zonal flow modede,; that is, d¢y= do+ S
quence, the level of the anomalous ion thermal transporth 8¢ +c.c.,

Zonal flows correspond to potentials which spatially depend

only on the radiug and contain temporal variations with ¢0(r,t):e—i(n¢+wot)2 do(m—nq)e'™m?, )
time scales longer than that of the drift waves. Recent gyro- m

kinetic simulation3 have shown that zonal flows could be

spontaneouslhexcited by ITG turbulence held at constant 8¢, =N (0wt KN G (m—nqg)e™?,  (2)
level, suggesting parametric instability processes as the gen- m

eration mechanism. Diamonét al® have proposed the and 8¢, =0, Ka—9D +c.c.. Thus g is the pump drift

modu,l,atl-onal instability of drift-wave turbulencé‘plas- wave andwy its eigenmode frequencyi¢, and 56 are,
mons”) in a slab-geometry treatment. Those authors alsQegyectively, the upper and lower sidebands produced by the
noted that unstable zonal flows can couple back to the d”ff'nodulation in the radial envelope due &, at frequency
waves and proposed a predator-prey model for the nonline%Z and radial wave numbé¢,. We have assumet>1 and
self-regulation of the drift wave turbulence. adopted the ballooning mode representdtion which K,

In the present letter, we show, both analytically and by_ ¢ ¢, q=rB ,/RB, is the safety factor, and06,=< is
direct 3-D gyrokinetic simulations, that zonal flows can beihe Bloch phase shift. The pump mogg has6,=0 (i.e., a
readily excited via the modulational instability of a single- fat radial envelope which is, for a givenn, usually the
coherent drift wave in toroidal plasmas, withthe toroidal  |inearly most unstable mode. On the other hadg,, and
mode number. We note that our theory is strictly applicable5¢7 have 6,7 0, giving radial envelope modulations. Typi-
to toroidal geometry. Specifically, the drift wave, while hav- cally they are linearly stable for moderate valueggf We
ing only a singlen value, contains many poloidal harmonics are thus dealing with a four-wave coupling process among
(m’s) which are toroidally coupled. Thus the modulation cor- ¢,, 8¢, 8¢_, and 5¢,. Three wave parametric excita-
responds to that of the radial envelope describing the magion of zonal flows can be shown to be rather ineffective due
nitude of each poloidal harmonic. In this respect the zonato the frequency and wave number matching constraints.
flow can be regarded as the radial envelope mode. Since electrons are adiabatic for the:0 drift waves,

Consider a large aspect raticeta/R<1) tokamak only ions contribute to the nonlinear physia®b, is then
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coupled to®, and §¢.. , and the nonlinear coupling coeffi-
cient is formally of the Hasegawa—Mima tyfeli.e.,

(“iwgtv)xi®,=g( 2 [2,PFP. —a Be®_]),
(3)

where g= (c/2B) ajp?k,K,, a,=ki —k2,, a_=k3,
K2, xi;=1.6e¥KZp/B3/B;, " v,=(1.5em;;) 1" ko,
= 0ky+inq'fa,;, ky=nalre, 1o refers to one reference
mode surface/=m—nq corresponds to the fast radial vari-
able k., =fK,xkg, , and(A)= f’i,zAd { is an averaging
with respect torg, a;=0Py, /(Nedy)+1 and Py, is the
perturbed perpendicular pressure duedtp. The detailed
expression fore; depends on the specific drift wave mode
and plasma parameters, e.g.qi=1+7+mn71,
=dInT;/dInN for the electron drift wave, andy;=7(1
+7)/[(37—1)L,/R+1/2]+1 for ITG in the fluid ion local
approximatior? HereL, *=dInN/dr and 7=T;/T,. In de-
riving Eq. (3) we have assumefk, p;| <1 with p; the ion
gyroradius,|w,|<wgaw, and averaged over the geodesic
acoustic modé?

The nonlinear coupling ob¢.. to &y and 6®, can be

straightforwardly calculated using the nonlinear gyrokinetic

equatio?® and the quasineutrality condition. We have, de-
noting w, = w,+ wo,

LD, =, (1+T)<1>+—(Ti/e)<fd3vJ05<3!+>

=—i(c/B)kyK,mPo() P, 4
where §G!, satisfies the linear gyrokinetic equattén®
(vjb-V—iw, +iks, Vg 6G|, =—hd. (5)

with h=(w,;—w,;)FuJoe/T; and b=By/By, v4 is the
magnetic VB, and curvature drift,Jo=Jo(k, pi), o,

= w,in[ 1+ 7(v%(205) = 3/12)],  w4in=Kepirvit/Ly, and
Fwi is the Maxwellian ion distribution witty;; the ion ther-
mal velocity. £, =L(w, ,k;, ,{) and L is just the linear
operator for the drift wave eigenmode. In particuldpd,
=L(wq,Kq, ,{)Po=0 with wy the eigenmode frequency. In
deriving the nonlinear response in E¢) we have assumed
fluid ions. Since Eq(4) depends only o we can solve it by
first Fourier transforming to the along-field-line ballooning
coordinate. Letting @, =A,®y(¢) and Cfbo(n) equal the
Fourier transform ofby({) we readily find

A,=—ick,K,7®,/BD, (6)
where D+((1)+ 1k(~}!KZ)E<<é)3z+d\)0>>/<<|&)0|2>>7 with
{(ANY=1"_dyA, and L,=L(w,, 0k, +F(kdn+K,),
—id,) is the corresponding linear drift wave operator in the
n coordinate 5=q’r/q the local shear.

Letting O, = w(k,,K;,) be the eigenfrequency for the
upper side band and noting thab,|,|Q . — wo|<wqy, D,
can then be approximated a3, =(dDg, /dwg)(w,+A
+ivyq), whereDy, is the Hermitian part oD, dD, /dwg
=7, A=wy—Q,, is the frequency mismatch, angy
=—,, is the sideband damping rate.
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Similar analysis can also be carrried out for the lower
sideband. Thus we fin@_=A_®y({),

A_=ick,K,r®,/BD_ @

and D_=(dDg, /dwg)(w,—A+ivyy). Here Q.=Q_
=w(k,,—K,) due to the up—down symmetry. Substituting
®.=A.d, into Eg. (3) and noting that(Z,|®|?)
=[7_|®o|2dZ=((|®o|?)) we finally obtain the desired lin-
ear dispersion relation for the modulational instability

(8
where we have let—iw,=I', and v3=(«;/1.6€°?)
X(BgkoCsKops/B ) %((|edo/Te|?)). With appropriate a;
Eq. (8) is valid for various branches of drift waves such as

the electron drift wave or ITG. It can be solved 1oy in two
limits. In the|A|<yq,ym limit, we have

I+v,= ’yfll(rz"_ yd)/[A2+ (I';+ 'Yd)z]a

== (yat+ v) 2+ [+ (va— v) 141" (€)

Thus while the instability has a threshold &f,=v,vq,
strong growth withl" ,= y\, only sets in whenyy= y4/2. On
the other hand, folyy ,|A|> 4,7, we have

T,=yw(1— A2 y3)2 (10)

Again, strong growth withl',= ), sets in whenyy=|A]|.
Note that forl",= yy > |K,ps||edo/ T4/, the coherent modu-
lational instability is generally much stronger than that of the
drift wave “plasmons” with growth ratex|ed®,/T4/?. Fur-
thermore, |A|=KZ(dDg, /dk3,)/2(6D o,/ dwg) = woK2p2(1
+7)/2, and y4 generally increases witk,p;. I',, for a
given|®,|, can then be expected to first increase Ktfp,

but eventually decrease at lard€,ps. While the exact
(K,ps)m at whichT', maximizes cannot be predicted, it in
general will increase with the pump wave amplitq@feo|.
Thus far away from linear marginal stability one expects
strong linear instability, largeid,|, and modulational insta-
bilities peaked around Bloch phase shifig,~O(1), i.e.,
(Kzps)m~KkgpsS. That is, with strong linear drive the radial
scale lengths of zonal flows and drift wave envelopes should
be on the order of a typical distance between adjacant mode
rational surfaces.

The predicted modulational instability features have
been observed in 3-D global gyrokinetic simulations of ITG
modes using the gyrokinetic toroidal coti@hese nonlinear
simulations keep only a single toroidal mode: O initially.

The starting fluctuation level is very low to allow linear ITG
eigenmode structure to be formed before nonlinear satura-
tion. When the ITG mode grows to a desired amplitude, an
external damping is applied so that the mode amplitude stays
constant. Zonal flow with a single radial mode number is
now self-consistently included. We observe exponential
growth of zonal flow until it reaches a high level where the
ITG mode is suppressed. The radial envelope modulation of
the ITG mode correlates with the zonal flow radial structure.
As shown in Fig. 1A), the growth rate of zonal flow with a
fixed radial mode number linearly depends on the ITG mode
amplitude. These results are for amplitudes which are small
compared to saturation levels. At larger amplitude ITG non-
linear effects appear. Analytical prediction of zonal flow
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FIG. 1. Gyrokinetic simulation results of zonal flow growth réde vs ITG 9 o— 3 sin(V), (15

mode amplitude for fixed),, and(B) vs 6, for fixed ITG amplitude, nor-

malized to ITG growth,y,. The line in(A) is the solution of Eq(9). with Ty=v4/v0, v,=v,/vo, and =Aly,. These equa-
[l z z [} .

) ) ~ tions are similar to those for three-wave couplifigyence
growth rate from the solution of E¢9) is shown by the solid \ve anticipate similar behavior, such as the existence of a
line in Fig. 2(A). In the analytical calculation, the sideband gtaple attractor and a period doubling route to chaos.
damping rate is estimated from simulations to hg Introduce an associated one-dimensional map by defin-
~ 1.5y, including both intrinsic damping and externally ap- ing timesr, at successive zeros dz/dr. A numerical plot
plied damping, andy, is the pump ITG intrinsic linear of the values ofZ, in steady statéafter transients have died

growth rate. For a fixed ITG mode amplitude, measuredyyay) is shown in Fig. 2 ford=2, I'y=2. Equations(12)—
zonal flow growth rate increases linearly with radial mode

number(or 6y) for small 6, and decreases for largk, as 3
shown in Fig. 1B), consistent with theory.

We now consider the nonlinear evolution of this modu-
lation instability. As 8¢, and 6¢.. exponentiate in ampli-
tude, they will nonlinearly couple and induce damping in the
pump wave amplitude. Replacing, by wy+id;, letting

{(|edy/T,?))=A2, and including the linear growth ratg, <
the equation foAy(t) becomes 0w
d CTE ka}KZ %
(dt - YO)AO— " B 3Dy /dwg /awO(A_®Z+A+q)Z )
(12) !

Equations governingA, , A_=A%, and ®, are given by

Egs. (3), (4), and (6) and noting that D.
=idDg [ dwo(d/dt=iA+ vy4). Using dimensionless time

=yot and performing straightforward normalizations such 0
that Ag<P, A, «Sd¥® andd,=Z, we find

dj =P—2ZScoq V), (12) EIG. 3. Numerical frequencies, linear values, vy, , and damping’ near the
dr fixed point,5=2, I'y=2.
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modes are ignorable, the present results, obtained for a
singlen mode, can be readily generalized to a spectrum of
multiplen toroidal modes.
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S Present turbulence simulations havg~ 1, with values
B . of y, and & placing them in the stable fixed point domain.
0.4 / — The oscillations observed are thus probably nonlinear tran-
B / ] sient decay to the fixed point, with the decay time much
03 . longer than the simulation time. The drift wave intensity is
R TN - 52 2 . .
v | , 15 ] l4=P5+2S;. Assuming weak turbulence scaling of;
z L N ] «l4, wherey; is the anomalous ion thermal transport coef-
0.2 - E ficient, we find that in the stable domaine« v, »;; consis-
: _—0=1 . tent with the trend observed in simulatichi the future we
0.1 - S — will explore the route to chaos with nonlinear simulations
B L \‘ 7 and examine its implications foy;. Finally, we note that,
stable \ . ) . . . .
o b | | — - ] assuming nonlinear interactions among0 toroidal drift
(SN I | I | I I | I I | I I
0
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FIG. 4. Destabilization of the fixed point.
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spond to a rapid increase to the upper value followed by

a slow decay to the lower. Frequency, damping, and growth,

about the fixed point,,7y,, obtained in the following, are
also shown. Apparent chaos sets in §g&=0.75.
The fixed point of Eqs(12)—(15) is readily found to be
(62+T3)/(2Ty), Po=\y:Zo, So=Po/\2T'y, sinW¥,
=8\J8?+T3. Linearizing Egs.(12)—(15) about the fixed
point we find for the complex frequency

w4—iC3w3+Czw2—iclw+Co=0, (16)

with co=4y,(T3+6%), c1=co/Ty, Cr=7v,84T4—y,I'g
— T4+ T4—T5— 6% cz=1—-2T4—v,.

Destabilization of the fixed point is obtained by requir-
ing that the frequency be real, givingc,c3=c2+ cocs with
the frequency given bw?= —c;/c5. In Fig. 4 is shown the

domain in which the stable fixed point exists. The boundarie%i

of the stable domain ag,=0 are given byl'4=1/2 andl“g’
=6%(T'4+1). For smally, andw the real frequency and the
damping behave asw=A\y, v=By,, with A
=2\(T3+ &) I(T5+ 6°—T 4+ 6%Ty) and B=2(6°-T3
+8MT g+ SHTE)(T5+ 62—T 4+ 6%Ty)% The ratio of
damping to frequency is shown in Fig. 3.
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