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A conservative scheme has been formulated and verified for gyrokinetic particle simulations of

electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation

derived from the drift kinetic equation is used to time advance the electron density perturbation by

using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel

vector potential is solved by using the perturbed canonical flow from the perturbed distribution

function. In gyrokinetic particle simulations using this new scheme, the shear Alfv�en wave

dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been

recovered. The new scheme overcomes the stringent requirement in the conventional perturbative

simulation method that perpendicular grid size needs to be as small as electron collisionless skin

depth even for the long wavelength Alfv�en waves. The new scheme also avoids the problem in the

conventional method that an unphysically large parallel electric field arises due to the

inconsistency between electrostatic potential calculated from the perturbed density and vector

potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations

of the Alfv�en waves in sheared cylinder have superior numerical properties compared with the

fluid simulations, which suffer from numerical difficulties associated with singular mode

structures. Published by AIP Publishing. https://doi.org/10.1063/1.5016432

I. INTRODUCTION

The kinetic effects of electrons are important to long

wavelength magnetohydrodynamic (MHD) instabilities and

short wavelength drift-Alfv�enic instabilities responsible for

turbulence transport in magnetized plasmas, since the non-

adiabatic electron can interact with, modify, and drive the

low frequency instabilities.1,2 Electromagnetic simulation

with kinetic electrons encounters great computational chal-

lenges, especially for the long wavelength modes in high b
plasmas (b is the ratio between kinetic and magnetic pres-

sures),3,4 which have been widely studied during the past

two decades. In particular, the electromagnetic gyrokinetic

particle simulation directly solving the electron drift kinetic

equation cannot address efficiently the long wavelength

modes, and the numerical performance becomes worse in

high b plasmas. Early studies suggest that the perpendicular

grid size should resolve electron skin depth for conventional

perturbative (df ) simulations of shear Alfv�en waves,4 which

represents a huge computational cost for the global simula-

tion. The origin of this problem is that the large two adia-

batic terms on both sides of the parallel Ampere’s law using

the canonical momentum pjj formulation cannot cancel with

each other exactly when the grid size is larger than the elec-

tron skin depth in the conventional df simulation,5,6 which is

sometimes referred to as the “cancellation problem” that

affects the accuracy of the small non-adiabatic part.7,8

Although many methods have been developed to overcome

or avoid the “cancellation problem,”5–15 electromagnetic

gyrokinetic particle simulation with kinetic electrons is still

computationally challenging.

In this work, we have formulated and verified a new

conservative scheme using both the electron continuity equa-

tion and drift kinetic equation for gyrokinetic simulation of

electromagnetic modes including long wavelength shear

Alfv�en waves. To demonstrate the successful application of

the conservative scheme, we focus on the pjj formulation

which suffers a severe numerical problem in early numerical

studies.3,4 In the conventional df algorithm, it is found that

the electron perturbed density and canonical flow measured

from kinetic markers do not satisfy the electron continuity

equation. Consequently, the electrostatic potential calculated

from the density and the parallel vector potential calculated

from the canonical flow are not consistent with each other,

which results in an unphysically large parallel electric field.

In the new conservative scheme, we use the electron continu-

ity equation to time advance the electron density perturbation

using the perturbed mechanical flow calculated from the par-

allel vector potential, and the parallel vector potential is

solved by using the perturbed canonical flow from the kinetic

markers. Using this new scheme in gyrokinetic particle simu-

lation, we have verified the dispersion relation of the shear

Alfv�en wave in the shearless magnetic field, and Alfv�en con-

tinuum damping and kinetic Alfv�en wave propagation in the

sheared magnetic field. This new conservative scheme has

no restriction of the perpendicular grid size to resolve the

electron skin depth for the long wavelength MHD wave sim-

ulation, and only requires a very small number of kinetica)Author to whom correspondence should be addressed: zhihongl@uci.edu
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markers (20 markers per cell) to achieve sufficient accuracy

in linear simulation. In addition to the simulations of the low

frequency drift-Alfv�enic modes described in the paper, the

new conservative scheme has also been successfully applied

to the simulations of radio frequency (RF) waves such as

lower hybrid wave in tokamak plasmas.16,17 Both simulation

and theory have shown that an unphysically large dEjj is pro-

duced due to the inconsistency of the perturbed density and

canonical flow in the simulation of the long wavelength

shear Alfv�en wave in the conventional df scheme, which

leads to the well-known numerical difficulties. In contrast,

the conservative scheme guarantees the correctness of dEjj
by enforcing the consistency between the perturbed density

and canonical flow, and thus enforcing the consistency

between the electrostatic potential and the parallel vector

potential. Finally, by comparing the gyrokinetic particle sim-

ulation and fluid simulation of the kinetic Alfv�en wave prop-

agation in the sheared plasmas, we found that the fluid

simulation suffers the artificial singular mode structure prob-

lem due to the model limitation, while gyrokinetic particle

simulation physically avoids the artificial singularity by

inducing the kinetic effects, i.e., electron Landau damping,

which shows the superiority of our gyrokinetic particle simu-

lation model.

The paper is organized as follows: the physics model of

the conservative scheme for electromagnetic simulations

with drift kinetic electrons is introduced in Sec. II. The simu-

lation results of shear Alfv�en waves in both the uniform and

sheared magnetic field are shown in Sec. III. In Sec. IV, the

effects of particle noise in the PIC simulations of long wave-

length shear Alfv�en waves are studied theoretically for the

conventional perturbative scheme and conservative scheme.

Section V is the conclusion.

II. CONSERVATIVE SCHEME

Electromagnetic simulation with kinetic electrons suf-

fers severely numerical instabilities when be � me=mi and

k2
?d2

e � 1(k? is the perpendicular wave vector and de is the

electron skin depth) in earlier gyrokinetic particle simula-

tions.3,4 In this work, we are able to avoid these numerical

instabilities by using an electron continuity equation to

ensure the density conservation in the simulation, which is

referred to as the conservative scheme. The ordering adopted

in the paper is

x
Xi
� df

f
� e/

T
� dB

B0

�
kjj
k?
� 1

k?L
� O eð Þ � 1;

where x and Xi ¼ eB0=cmi are the physical mode frequency

and ion cyclotron frequency, df and f are the perturbed and

total particle distributions, / and dB are the perturbed elec-

trostatic potential and perturbed magnetic field, and k? and

kjj are the perpendicular and parallel wave vectors. L is

plasma equilibrium scale length L�1 � ðL�1
n ¼ rlnn; L�1

T

¼ rlnT; L�1
B ¼ rlnB0Þ (T is plasma temperature, n is

plasma density, and B0 is equilibrium magnetic field).

The electron drift kinetic equation uses guiding center

position R, parallel canonical momentum pjj ¼ mevjj

þqedAjj=c(me and qe denote electron mass and charge,

respectively), and magnetic momentum l as independent

variables in five dimensional phase space18,19

@

@t
feB�jj
� �þr � _RfeB�jj

� �
þ @

@pjj
_pjjfeB�jj
� � ¼ 0; (1)

_R ¼ 1

me
pjj �

qe

c
dAjj

� �
B�0
B�jj
þ cb0

qeB�jj

� lrB0 þ qerWl þ qerWnlð Þ; (2)

_pjj ¼ �
B�0
B�jj
� lrB0 þ qerWl þ qerWnlð Þ; (3)

where fe ¼ feðR; pjj; l; tÞ is the electron guiding center distri-

bution, B0 ¼ B0b0 is the equilibrium magnetic field,

B�0 ¼ B0 þ c
qe

pjjr � b0, B�jj ¼ b0 � B�0, / is the electrostatic

potential, dAjj is the vector potential, and Wl ¼ /� pjjdAjj
mec and

Wnl ¼
qedA2

jj
2mec2 are the linear and nonlinear parts of the general-

ized potential, respectively. Equations (1)–(3) are also

referred to as pjj formulation in a conservative form and sat-

isfy the Liouville’s theorem.19

In order to minimize the particle noise, the perturbative

(df ) method20,21 is widely used in particle-in-cell simula-

tions. In the perturbative (df ) method, the distribution func-

tion fe is decomposed into equilibrium and perturbed parts as

fe ¼ fe0 þ dfe. In the lowest order equilibrium part, Eq. (1)

reduces to

L0fe0 ¼ 0; (4)

where L0 ¼ @
@tþ

pjj
meB�jj

B�0 þ
cl

qeB�jj
b0 �rB0

� �
� r � l

B�jj
B�0

� rB0
@
@pjj

is the equilibrium propagator. The equilibrium

solution fe0 can be approximated as a Maxwellian: fe0

¼ ne0ð me

2pTe0
Þ3=2

exp � p2
jj=meþ2lB

2Te0

� �
when the neoclassical

effects are not important.

Subtracting Eq. (1) by Eq. (4), the equation for the per-

turbed distribution dfe is

Ldfe ¼ � dL1 þ dL2ð Þfe0; (5)

where L ¼ @
@tþ _R � r þ _pjj

@
@pjj

is the total propagator, and

the perturbed propagator dL ¼ dLL þ dLNL consists of linear

and nonlinear parts

dLL ¼ �
qedAjj
cme

B�0
B�jj
þ cb0 �rWl

B�jj

 !
� r � qe

B�0
B�jj
� rWl

@

@pjj

dLNL ¼ cb0

qeB�jj
� qerWnl � r � qe

B�0
B�jj
� rWnl

@

@pjj
:

Defining the particle weight as we ¼ dfe=fe, the weight equa-

tion can be derived by using Eq. (5)

dwe

dt
¼ Lwe ¼ � 1� weð Þ 1

fe0

dL1 þ dL2ð Þfe0: (6)

The parallel scalar potential dAjj is solved from

Ampere’s law
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r2
? �

x2
pe

c2
�

x2
pi

c2

� �
dAjj ¼

4p
c

ene0Ujjec � Zini0Ujjic
� �

; (7)

where Ujjec and Ujjic are the parallel canonical flow calcu-

lated from the kinetic markers

Ujjac ¼
1

na0ma

ð
dvpjjdfa; (8)

where a ¼ i; e and
Ð

dv ¼ ð2pB0=m2
aÞ
Ð

dpjjdl. The appear-

ances of the second and third terms on the LHS of Eq. (7)

are due to the adiabatic parts associated with dAjj from parti-

cle canonical momentum pjj. The last terms on both sides of

Eq. (7) associated with ions are dropped in this paper for

simplicity.

Integrating Eq. (5) in velocity space and keeping terms

up to the Oðe2Þ order, we can derive the electron continuity

equation in a conservative form

@dne

@t
þr � ne0 dujjeb0 þ VE þ ujje0

dB

B0

� ��

þ 1

Te0

dP?eVg þ dPjjeVc

� �
þ

ne0dujje
B0

dBþ dneVE

	
¼ 0;

(9)

where VE ¼ cb0 �r/=B0, Vc ¼ cT0

qeB0
b0 � ðb0 � rb0Þ, and

Vg ¼ cT0

qeB2
0

b0 �rB0. ujje0 ¼ � c
4pene0

b0 � r � B0 is approxi-

mated as the equilibrium current, dPjje ¼ 1
me

Ð
dvp2

jjdfe,

dP?e ¼
Ð

dvlB0dfe, and dB ¼ r� ðdAjjb0Þ is the magnetic

perturbation. dujje ¼ Ujjec �
qedAjj
cme

represents the mechanical

flow in Eq. (9). However, due to the fact that jUjjecj
	 j qedAjj

cme
j � jdujjej in be � me=mi and k2

?d2
e � 1 regimes, it

will bring severe “cancellation problem” when we calculate

dujje by using dujje ¼ Ujjec �
qedAjj
cme

with particle noise. In

order to overcome this problem, we calculate dujje by invert-

ing the original Ampere’s law as

ne0edujje ¼
c

4p
r2
?dAjj; (10)

where dAjj is solved from Eq. (7), and the ion current is

dropped for simplicity. To the leading order terms up to

Oðe2Þ, Eq. (9) integrated from the drift kinetic equation in

the pjj formulation is the same with the vjj formulation ones:

Eq. (28) in Deng et al.22 and Eq. (21) in Bao et al.33

The Poisson’s equation is23

4pZ2
i ni0

Ti0
/� ~/
� �

¼ 4p Zidni � edneð Þ; (11)

where ni0 and Ti0 are the ion equilibrium density and temper-

ature, respectively. Zi represents ion charge, and dni

¼
Ð

dvdfi is ion perturbed density. The terms on the left hand

side of Eq. (11) represent ion polarization density.

Equations (1)–(3) and (6)–(11) form a closed system

together with the ion gyrokinetic equation and represent the

new conservative scheme, which can be applied to the non-

linear toroidal electromagnetic simulations with kinetic elec-

trons. Note that by using the canonical momentum as an

independence phase space coordinate, we avoid the well-

known numerical issues of explicit time derivative of the

vector potential to calculate the inductive parallel electric

field. In this paper, we focus on verifying this new model for

the linear shear Alfv�en wave simulation in both the shearless

and sheared magnetic field. The application to the nonlinear

and toroidal simulations will be reported in the future.

If we neglect ion finite Larmor radius (FLR) effects and

parallel motion, then ion E� B drift cancels out with elec-

tron E� B drift, and ion only contributes to the polarization

density [appears on the left hand side of Eq. (11)]. The linear

dispersion relation in the uniform plasmas can be derived as

x2

k2
jjV

2
A

� 1

 !
1þ neZ neð Þ½ 
 ¼ k2

?q
2
s ; (12)

where ne ¼ x=
ffiffiffi
2
p

kjjvthe, qs ¼ Cs=Xci, vthe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=me

p
,

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, VA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pni0mi

p
and ZðneÞ is the plasma

dispersion function

Z neð Þ ¼
1ffiffiffi
p
p
ðþ1
�1

e�t2

t� ne

dt:

Thus, compared to the dispersion relation derived from the

Lin-Chen fluid-kinetic hybrid electron model,6 the ion acous-

tic wave is artificially removed in this paper for simplicity,

but can easily be incorporated by retaining the kinetic ion

contribution.

III. SIMULATION RESULTS

A. Shear-less magnetic field

To verify the new conservative scheme, we implement it

in a 2D slab code to simulation the kinetic shear Alfv�en

wave (KAW) in a uniform magnetic field pointing in the pos-

itive z-direction. The KAW wave vector is in the x-z plane.

The electrons are treated using the drift kinetic equation and

the ions as the fixed background with only contribution to

the polarization density. We first carry out simulations with

Te0 ¼ 5:0 keV, B ¼ 1:5 T, ne0 ¼ 1� 1013 cm�3, be ¼ 0:9%,

and kjj=k? ¼ 0:01, and verify the wavelength kqs depen-

dence of frequency as well as Dx=de (Dx is the perpendicular

grid size and de is the electron skin depth) dependence. We

change the wavelength in the range of 0:01 < kqs < 0:48.

The grid numbers per wavelength in the parallel and perpen-

dicular directions are fixed as Nz ¼ 64 and Nx ¼ 60, thus the

grid size also changes with the wavelength. We use 20

markers per cell in all simulations of this paper. We give an

initial density perturbation, and then let the perturbation

evolve self-consistently. The KAW frequencies measured

from simulations using the electron continuity equation

agree with the theory well for both short and long wave-

lengths regimes. Most importantly, the perpendicular grid

size can be much larger than the electron skin depth in the

long wavelength regime as shown in Fig. 1. This shows that

the perpendicular grid size is not restricted by the electron

skin depth when we calculate the density perturbation from

the electron continuity equation. For comparison, the simula-

tion results deviate from the theoretical predication in the

regime kqs � 1 or Dx=de � 1 when we calculate the density
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perturbation from kinetic markers directly, which are shown

by the black circles in Fig. 1. In these cases, without apply-

ing the electron continuity equation, the high frequency

noise level greatly increases for the longer wavelength

regime, which makes it difficult to measure the frequency

when kqs < 0:05. The numerical convergence tests with

respect to particle number per cell NP, time step kjjvtheDt,
perpendicular grid number per wavelength Nx, and parallel

grid number per wavelength Nz are shown in Fig. 2 for the

k?qs ¼ 0:048 case.

Next, we apply an antenna with the theoretical frequency

to excite the Alfv�en waves in different wavelength regimes:

1=kqs ¼ 4:2(Dx=de ¼ 1:2), 1=kqs ¼ 20:8(Dx=de ¼ 6:2), and

1=kqs ¼ 41:5(Dx=de ¼ 12:5), respectively. The upper panels

of Figs. 3(a)–3(c) give the time histories of the electrostatic

potential / at the position with the maximal value from the

conventional scheme and conservative scheme. As the wave-

length or perpendicular grid size increases, our simulation

model does not suffer numerical noise or instability as shown

by the blue lines. However, the noise level of the conventional

df scheme increases with the perpendicular grid size as shown

by the red lines, even though the time step of the red lines is 10

times shorter than the blue lines in Fig. 3(c) for numerical stabi-

lization. In the conservative scheme, simulations using the con-

tinuity equation, we plot in the lower panels of Figs. 3(a)–3(c),

the perturbed densities calculated from the kinetic markers in

order to compare with the results from the continuity equation.

The discrepancy of the perturbed densities calculated from the

kinetic markers and the continuity equation becomes larger as

the wavelength or perpendicular grid size increases.

The reason for the inconsistency between the perturbed

density and canonical flow calculated from the kinetic

markers in the df method can be interpreted as follows. The

assumption of the equilibrium distribution function fe0 as the

analytical Maxwellian fMaxwellian is not identical to the marker

distribution fMarker in the simulations due to particle noise,

and the error between these two distributions Df
¼ fMarker � fMaxwellian accumulates in the simulation through

Eq. (6) for the particle weight. Thus, after integrating the

perturbed density and canonical flow from the kinetic

markers using the particle weight, the electron continuity

equation is not satisfied due to this error.

For shear Alfv�en waves in the long wavelength limit, the

parallel electric field dEjj is nearly 0, which requires that the

electrostatic electric field dEe
jj ¼ �b0 � r/ and the inductive

electric field dEi
jj ¼ �ð1=cÞ@dAjj=@t evolve consistently and

cancel with each other. Since we apply pjj formulation and

dEi
jj does not appear explicitly in the simulation, here we cal-

culated dEi
jj numerically from the output information of dAjj

for diagnosis. In the conservative scheme, the consistency of

dEe
jj and dEi

jj is enforced by using the continuity equation, and

the total dEjj is much smaller than its electrostatic or inductive

components as shown in Fig. 4(a). When we calculated the

perturbed density from the kinetic markers, the inconsistency

of dEe
jj and dEi

jj gives rise to an unphysically large dEjj as

shown in Fig. 4(b). These observations prove our conclusion

that the perturbed density and canonical flow calculated from

the kinetic markers do not satisfy the continuity equation, and

the corresponding electrostatic potential and vector potential

do not evolve consistently in the conventional df method,

which causes the numerical instabilities in the electromagnetic

simulation of the long wavelength modes in high be plasmas.

Furthermore, the theoretical study of the error effects on the

dispersion relation and the parallel electric field are given in

Sec. IV, which confirms that the inconsistency of the per-

turbed density and canonical flow in the conventional df
scheme can cause significant deviations of the parallel electric

field from the exact solution.

Second, we carry out simulations of shear Alfv�en waves

in different be regimes. In the simulations, kqs ¼ 0:10 and

kqs ¼ 0:48 are chosen as long and short wavelengths cases,

respectively. We increase the plasma density ne0 from 1�
1013 cm�3 to 20:0� 1013 cm�3 for different be values. Other

parameters are the same with Fig. 1. The grid number per

FIG. 2. Numerical convergences with respect to (a) particle number per cell

NP, (b) time step kjjvtheDt, (c) perpendicular grid number per wavelength Nx,

and (d) parallel grid number per wavelength Nz. Simulations were performed

with k?qs ¼ 0:048 and be ¼ 0:9%. Frequency x is normalized by

xA ¼ kjjVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

?q2
s

p
.

FIG. 1. Dependence of KAW frequency on wavelength (bottom) and perpen-

dicular grid size (top). The red crosses represent results from the new conser-

vative scheme with the continuity equation, and the black circles represent

results from the conventional df scheme without the continuity equation.
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parallel wavelength Nz increases with be for numerical con-

vergence, e.g., Nz ¼ 128 is used for be ¼ 18% simulation,

while the grid number per perpendicular wavelength Nx ¼
60 is enough for the convergence of all the cases in Fig. 5.

Using the conservative scheme, the frequencies and damping

rates measured from the simulations agree well with the the-

ory for be � me=mi, and the corresponding perpendicular

grid size does not need to resolve the electron skin depth in

the very high be cases. For the kqs ¼ 0:10 case, the damping

rates of the shear Alfv�en wave are too small to measure,

which are absent in Fig. 5. Therefore, the accuracy of the dis-

persion relation of the shear Alfv�en wave can be achieved by

using the electron continuity equation in the high be

(be � me=mi) and long wavelength regimes without resolv-

ing the electron skin depth.

B. Sheared magnetic field

We now implement our model into the gyrokinetic toroi-

dal code (GTC)24 and carry out simulations of Alfv�en wave

in a cylinder plasma with magnetic shear. For comparisons

with the kinetic simulations, we also suppress the kinetic

effects in GTC to carry out fluid simulations of the Alfv�en

wave with the same parameters. In the fluid simulation, we

apply the momentum equation by taking the first moment of

the drift kinetic equation

@Ujjec

@t
þ qe

me
b0 � r/þ B0

mene0

b0 � r
dPjj
B0

� �
¼ 0; (13)

where the pressure dPjj ¼ dneTe0 using isothermal assump-

tion. Equations (7), (9)–(11) and (13) form a closed system

for fluid simulation with finite electron mass and tempera-

ture, which is equivalent to the fluid model with electron

inertia proposed by Liu and Chen.25,26

In inhomogeneous plasmas, both kjj ¼ ½nqðrÞ � m
=qðrÞR
and Alfv�en speed VA vary spatially with the equilibrium mag-

netic field and density, which gives rise to the continuum

FIG. 3. Time histories of electrostatic potential (upper panels) and density perturbation (lower panels) for various wavelengths. In the upper panels, the red

lines are from the conventional df scheme and the blue lines are from the conservative scheme using the continuity equation. In the lower panels, both the red

lines and blue lines represent density perturbation calculated from kinetic markers and from the continuity equation in the same simulation using the conserva-

tive scheme.

FIG. 4. The time histories of the parallel electric field dEjj for 1=kqs ¼ 41:5,

(a) is from the conservative scheme and (b) is from the conventional df
scheme.
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damping of the Alfv�en waves. In our simulation, the magnetic

field is B0 ¼ 2:0 T, equilibrium density and electron tempera-

ture are uniform with ne0 ¼ ni0 ¼ 2:0� 1013 cm�3 and

Te0 ¼ 5:0 keV, the electron beta value is be ¼ 1:0%, the

length of the cylinder is l ¼ 2pR0(R0 ¼ 1:0 m), the minor

radius is a ¼ 0:5 m (our simulation domain is from rmin

¼ 0:39a to rmax ¼ 0:86a, and a=qs ¼ 139), and the safety fac-

tor q varies monotonously as q ¼ 0:76ðr=aÞ2 þ 0:8. The per-

pendicular grid size is Dx=de ¼ 2:0 and the time step is

Dt ¼ 0:04R0=vthe. We apply an initial density perturbation

with the poloidal mode number m ¼ 3 (khqs ¼ 0:034 at

r ¼ 0:63a, and initial krqs ¼ 0:048) and axial mode number

n ¼ 2. The time history of the electrostatic potential / at the

radial position r ¼ 0:63a is shown by Fig. 6(a). The Alfv�en

wave damps more quickly in the simulation with drift kinetic

electrons than fluid electrons. As predicted, the time depen-

dence of the mode amplitude due to the continuum damping is

proportional to 1=t.27–29 In order to verify the simulation with

the theory, we compare the / amplitude evolution between

fluid simulation and kinetic simulation in Fig. 6(b). It is found

that the wave amplitude histories from both fluid (red line)

and kinetic (blue line) simulations agree with the 1=t fitting

(the black dashed line) at the initial phase, which verifies the

Alfv�en continuum damping. However, in the kinetic electron

simulation, the electron Landau damping becomes the domi-

nant damping mechanism later on, which is close to an expo-

nential decay as shown by the black solid fitting line. For

comparison, in the fluid simulation, the time history of /
agrees with the 1=t fitting, and the slight deviation in the later

period is due to the finite electron mass and thermal pressure

effects, which cause the propagation of Alfv�en waves and

affect the continuum damping. The radius-time plots of the

absolute value of the electrostatic potential / from kinetic and

fluid simulations are shown by Figs. 6(c) and 6(d), respec-

tively. Figure 6(d) shows that the continuum damping in the

fluid simulation causes the increase of the radial wave vector,

eventually leading to a singular radial structure (which is not

physical). In contrast, the kinetic effects in the kinetic

FIG. 5. Dependence of frequency on electron beta be and perpendicular grid size Dx=de for (a) kqs ¼ 0:10 and (b) kqs ¼ 0:48. (c) dependence of damping rate

on electron beta be and perpendicular grid size Dx=de for kqs ¼ 0:48. The red crosses represent simulation results from the conservative scheme.

FIG. 6. (a) Time evolution of electro-

static potential / at r ¼ 0:63a and (b)

corresponding absolute value of elec-

trostatic potential. (c) and (d) are

radius-time plots of log10ðej/j=Te0Þ
from kinetic and fluid simulations,

respectively.
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simulation result in the Landau damping and the formation of

normal modes with discrete frequencies (which are more phys-

ical Landau eigen states) as shown in Fig. 6(c). This indicates

that the kinetic approach for the simulations of Alfv�en waves

is not just more physical, but also numerically superior than

the fluid approach.

Furthermore, we carry out simulations of KAW using

antenna excitation to verify the propagation in cylinder plas-

mas. The radial simulation domain is from rmin ¼ 0:39a to

rmax ¼ a. The other parameters are the same as the contin-

uum damping simulation earlier in this subsection. We excite

the KAW with the poloidal mode number m ¼ 3

(khqs ¼ 0:022 at r ¼ a) and the axial mode number n ¼ 3 at

the edge by using an external antenna with local shear

Alfv�en frequency xA0 ¼ kjj0VA, where kjj0 is the parallel

wave vector at r ¼ a. The excited shear Alfv�en wave can

convert to the kinetic Alfv�en wave at the launching position

since it is also the resonant layer where the relation xA0

¼ kjjðaÞVA is satisfied; then, the KAW can propagate across

the magnetic field lines.30,31

In Fig. 7, we present the radial electric field dEr

¼ �@/=@r of the Alfv�en wave propagation from fluid and

kinetic simulations with different perpendicular grid sizes. In

the fluid simulation, the dispersion relation of the shear

Alfv�en wave with finite electron mass is k2
? ¼ 1

q2
s

ð1� x2

k2
jjðrÞV

2
A

Þ=ð x2

k2
jjðrÞv

2
vthe

� 1Þ, thus there exists the singular sur-

face (k2
? ! þ1), where xA0 ¼ kjjðrÞvthe is satisfied for the

Alfv�en wave propagation with a fixed frequency. For com-

parison, the dispersion relation of the shear Alfv�en wave

with zero electron inertial term is k2
? ¼ 1

q2
s
ð x2

k2
jjðrÞV

2
A

� 1Þ, and

the singular surface for the shear Alfv�en wave with m ¼ n
¼ 3 is q ¼ 1 surface where kjjðrÞ ¼ 0. In the simulation, we

use the finite electron mass model. From the upper panels of

Figs. 7(a)–7(c), it can be seen that the perpendicular wave

vector will increase as the Alfv�en wave propagates toward

the singular surface. The singular surface in the simulation

deviates from the theoretical predictions, which is due to the

fact that the spatial resolution is not enough to resolve the

short radial wavelength. The shear Alfv�en wave propagates

to the theoretical singular surface only when the perpendicu-

lar grid size Dx! 0. For comparison, there is no singularity

in the drift kinetic electron simulation as shown by the lower

panels of Figs. 7(a)–7(c). The perpendicular grid size is less

important, since the kinetic effects lead to the formation of a

normal mode and thus prevent the increase of the perpendic-

ular wave vector. This also shows the necessity of the kinetic

approach for the simulations of Alfv�en waves as illustrated

in the earlier study of continuum damping in this subsection.

IV. ERROR ESTIMATIONS

A. Error effects on the dispersion relation

We have demonstrated in Sec. III that the perpendicular

grid size should resolve the electron skin depth for the con-

ventional df scheme in order to control the error level, while

there is no restriction of the perpendicular grid size in the

conservative scheme. In this part, we derive the dispersion

relation of the shear Alfv�en wave with the particle noise

effect for the conventional df scheme and the conservative

scheme (continuity equation method), and explain why the

FIG. 7. Radius-time plots of radial electric field dErðA:U:Þ of the shear Alfv�en wave propagation using various perpendicular grid sizes. The upper panels are

from fluid simulation and the lower panels are from kinetic simulation.
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conservative scheme is superior to the conventional df
scheme theoretically.

Applying the Fourier transform: @=@t ¼ �ixt, b0 � r
¼ ikjj to the linear version of Eq. (5), we can derive the per-

turbed electron distribution in the uniform plasmas

df ¼
kjjvjj

x� kjjvjj
/�

vjj
c

dAjj

� �
qe

Te0

f0; (14)

where vjj ¼ pjj=me. Electron E� B drift cancels with ion

species and does not appear.

The perturbed density and canonical flow can be derived

by integrating Eq. (14) as

dn ¼ ene0

Te0

/� 1

c

x
kjj

dAjj

� �
1þ neZ neð Þ½ 
 (15)

and

Ujjc ¼ � e

cme
dAjj þ

e

Te0

x
kjj

/� 1

c

x
kjj

dAjj

� �
1þ neZ neð Þ½ 


� �
:

(16)

In the conventional df scheme, both electron density

and canonical flow perturbations are calculated from the

kinetic markers, thus we multiply the exact solutions Eqs.

(15) and (16) by error coefficients to represent the values

measured from the simulation with particle noise. The

perturbed density and canonical flow calculated from

kinetic markers with the particle noise effect can be

expressed as32

d~n ¼ ene0

Te0

/� 1

c

x
kjj

dAjj

� �
1þ neZ neð Þ½ 
 1þ enð Þ (17)

and

~U jjc ¼ � e

cme
dAjj þ

e

Te0

x
kjj

/� 1

c

x
kjj

dAjj

� �
1þ neZ neð Þ½ 


� �
� 1þ euð Þ; ð18Þ

where en and eu represent the particle noise errors induced

from the kinetic markers to the perturbed density and the

perturbed canonical flow, respectively, Eqs. (17) and (18)

become the exact solutions when en ¼ eu ¼ 0.

Applying the Fourier transform r ¼ ik? to Eqs. (7) and

(11) and considering Eqs. (17) and (18), we can derive the

dispersion relation of the shear Alfv�en wave with particle

noise error

x2

k2
jjV

2
A

� 1

 !
1þ neZ neð Þ½ 


¼ k2
?q2

s

1

1þ eu
� be

2

mi

me

eu

1þ eu
� 1

k2
?d2

e

1þ neZ neð Þ½ 


� eu 1þ enð Þ
1þ eu

þ 1þ neZ neð Þ½ 
 en � eu

1þ eu
: (19)

Then, we can expand Eq. (19) using jenj � 1 and jeuj � 1

and only keep the first order error terms

x2

k2
jjV

2
A

� 1

 !
1þ neZ neð Þ½ 


¼ k2
?q

2
s 1� euð Þ � be

2

mi

me
eu �

1

k2
?d2

e

1þ neZ neð Þ½ 
eu

þ 1þ neZ neð Þ½ 
 en � euð Þ: (20)

From Eq. (20), it is seen that the particle noise error is ampli-

fied with increasing be and the perpendicular wavelength

through the second and third terms on the RHS, respectively,

which explains the numerical difficulty of the electromag-

netic simulation of the long wavelength modes with k2
?d2

e

� 1 in high be plasmas. For example, the numerically high

frequency modes dominate in the simulation of long wave-

length (k2
?d2

e � 1) shear Alfv�en waves by using the conven-

tional df scheme as shown by Fig. 3, which are caused by

the third error term on the RHS of Eq. (20).

In the conservative scheme, we use the kinetic markers

to calculate the perturbed canonical flow as Eq. (18). The

parallel vector potential with the error effect can be calcu-

lated by using Eqs. (7) and (18)

dAjj ¼
c
x
kjj

1þ neZ neð Þ½ 
 1þ euð Þ

�c2k2
?k2

Dþ v2
theeuþ

x2

k2
jj

1þ neZ neð Þ½ 
 1þ euð Þ
/: (21)

From Eqs. (9), (10), and (21), the perturbed density with par-

ticle noise error in the linear and uniform plasmas is

dn ¼
� c2k2

?
4pe

1þ neZ neð Þ½ 
 1þ euð Þ

�c2k2
?k

2
D þ v2

theeu þ
x2

k2
jj

1þ neZ neð Þ½ 
 1þ euð Þ
/: (22)

From Eqs. (11) and (22), the dispersion relation of the shear

Alfv�en wave with particle noise error in the conservative

scheme is

x2

k2
jjV

2
A

� 1

 !
1þ neZ neð Þ½ 
 ¼ k2

?q
2
s

1

1þ eu
� be

2

mi

me

eu

1þ eu
:

(23)

Keeping the first order terms with respect to particle noise

error, Eq. (23) can be written as

x2

k2
jjV

2
A

� 1

 !
1þ neZ neð Þ½ 
 ¼ k2

?q
2
s 1� euð Þ � be

2

mi

me
eu: (24)

Compared to Eq. (20), there is no particle noise error term

related to the perpendicular wavelength in Eq. (24). It is

because that the continuity equation guarantees the consis-

tency between en and eu in the conservative scheme, and the

last two terms on the RHS of Eq. (19) cancel with each other.

Thus, the conservative scheme is more robust than the con-

ventional df scheme for the simulations of long wavelength

electromagnetic modes. For example, the conservative

scheme can simulate shear Alfv�en waves in the long
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wavelength regimes accurately, while the conventional df
scheme fails as shown by Fig. 3. From Eqs. (20) and (24), it

is also noticed that finite be can amplify error terms for both

schemes. However, we can simulate the shear Alfv�en waves

with sufficient accuracy in the very high be regime by using

the conservative scheme as shown by Fig. 5, which indicates

that finite be effects are not as severe as long wavelength

(k2
?d2

e 	 0) effects on the numerical properties of electro-

magnetic simulations.

B. Error effects on the parallel electric field dEjj

As we have illustrated before, the perturbed density and

canonical flow calculated from the kinetic markers do not sat-

isfy the electron continuity equation, which leads to the incon-

sistency of the corresponding electrostatic potential and vector

potential in the conventional perturbative (df ) simulation.

However, the parallel electric field dEjj 	 0 in the long wave-

length (ideal MHD) limit, which requires that the electrostatic

electric field dEe
jj ¼ �b0 � r/ and the inductive electric field

dEi
jj ¼ ð1=cÞ@dAjj=@t evolve consistently and their major

parts can cancel with each other in the simulation. Thus, any

inconsistency of dEe
jj and dEi

jj can lead to the unphysically

large dEjj, and cause the numerical instability in the conven-

tional perturbative (df ) scheme. In this part, the error effects

on the parallel electric field dEjj are discussed for both the

conventional df scheme and conservative scheme.

In the conventional df scheme, applying the Fourier

transform r ¼ ik? to Eqs. (7) and (11), and considering

Eqs. (17) and (18), the electrostatic potential and vector

potential can be represented as

/ ¼ � 4pene0V2
A

c2k2
?

kjj
x

1þ en

1þ eu
� 1þ en

1þ k2
?d2

e

� �
~U jjc; (25)

dAjj ¼ �
d2

e

1þ k2
?d2

e

4pene0

c
~U jjc: (26)

Thus, the parallel electric field dEjj in the conventional df
scheme is

dEjj ¼ i
me

ex

k2
jjV

2
A

1þ k2
?d2

e

x2

k2
jjV

2
A

� 1

 !
~U jjc

þ i
me

ex

k2
jjV

2
A

k2
?d2

e

1þ en þ k2
?d2

e

1þ k2
?d2

e

� 1þ en

1þ eu

 !
~U jjc: (27)

By keeping the first order error terms based on jenj � 1 and

jeuj � 1, Eq. (27) can be simplified as

dEjj ¼ i
me

ex

k2
jjV

2
A

1þ k2
?d2

e

x2

k2
jjV

2
A

� 1

 !
~U jjc

þ i
me

ex

k2
jjV

2
A

k2
?d2

e

eu � en
k2
?d2

e

1þ k2
?d2

e

 !
~U jjc: (28)

The last term on the RHS of Eq. (28) is due to inconsistency

between en and eu, which will be amplified when k2
?d2

e is

small.

In the conservative scheme, the perturbed density is cal-

culated from Eq. (9) instead of Eq. (17). The electrostatic

potential can be derived by using Eqs. (9)–(11) and (26) as

/ ¼ � 4pene0V2
A

c2k2
?

kjj
x

k2
?d2

e

1þ k2
?d2

e

 !
~U jjc: (29)

By using Eqs. (26) and (29), the parallel electric field dEjj in

the conservative scheme is

dEjj ¼ i
me

ex

k2
jjV

2
A

1þ k2
?d2

e

x2

k2
jjV

2
A

� 1

 !
~U jjc: (30)

Comparing Eqs. (28) and (30) in the long wavelength limit

with k2
?d2

e � 1, it is seen that dEjj 	 0 with x2 	 k2
jjV

2
A for

the conservative scheme, while dEjj / 1=k2
?d2

e with x2

	 k2
jjV

2
A for the conventional df scheme due to the inconsis-

tency between the perturbed density and canonical flow.

Thus, the conservative scheme can guarantee dEjj 	 0 in the

simulation as shown by Fig. 4(a), while the conventional df
scheme causes the unphysically large amplitude of dEjj in

the simulation as shown by Fig. 4(b), which is due to the last

error term on the RHS of Eq. (28).

V. CONCLUSIONS

In this work, we present an innovative conservative

scheme to solve the numerical difficulty of the electromag-

netic gyrokinetic particle simulation with kinetic electrons.

In the conventionally electromagnetic perturbative ðdf Þ sim-

ulation with drift kinetic electrons of pjj formulation, we

found that perturbed density and perturbed canonical flow,

calculated from the kinetic markers, do not satisfy the conti-

nuity equation due to the particle noise, which causes the

inconsistency between the electrostatic potential and parallel

vector potential and leads to an unphysically large parallel

electric field in the long wavelength MHD regime. In the

conservative scheme, we use the electron continuity equation

to time advance the electron density perturbation using the

perturbed mechanical flow calculated from the parallel vec-

tor potential, and the parallel vector potential is solved by

using the canonical flow from the kinetic markers, which

guarantees the consistency between electrostatic and parallel

vector potentials. Furthermore, the conservative scheme

helps to relax the perpendicular grid size without resolving

the electron skin depth when the wavelength is longer than

the electron skin depth. However, in the conventional elec-

tromagnetic df scheme, the perpendicular grid size needs to

resolve the electron skin depth even for the long wavelength

MHD wave simulation. The simulations of the shear Alfv�en

wave dispersion relation and continuum damping are well

benchmarked with the theory by using the conservative

scheme. In the conservative scheme, simulation of the long

wavelength shear Alfv�en wave, the electrostatic component,

and the inductive component of the electric field cancel with

each other as expected. Finally, comparison of Alfv�en wave

propagation results between gyrokinetic particle simulation

and fluid simulation shows that gyrokinetic particle simula-

tion is superior to the fluid simulation by physically avoiding
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the singular mode structures through electron Landau damp-

ing. Building on the linear application of the conservative

scheme to shear Alfv�en wave simulation, the nonlinear simu-

lation results will be reported in the future work. Meanwhile,

the application of the conservative scheme on the drift

kinetic electron model with vjj formulation combining with

the split weight scheme has been reported in another work.33
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