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Abstract
Global particle simulations of the lower hybrid (LH) waves have been carried out using fully
kinetic ions and drift kinetic electrons with a realistic electron-to-ion mass ratio. The LH wave
frequency, mode structure, and electron Landau damping from the electrostatic simulations
agree very well with the analytic theory. Linear simulation of the propagation of a LH
wave-packet in the toroidal geometry shows that the wave propagates faster in the high field
side than the low field side, in agreement with a ray tracing calculation. This poloidal
asymmetry arises from the non-conservation of the poloidal mode number due to the
non-uniform magnetic field. In contrast, the poloidal mode number is conserved in the
cylindrical geometry with the uniform magnetic field.
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1. Introduction

Radio frequency (RF) waves are considered to be one of the
most efficient tools for steady state operation of the tokamak,
especially for heating and current drive [1–3]. Wide varieties
of linear and quasi-linear simulation models, e.g., the Wentzel–
Kramers–Brillouin (WKB, i.e., ray tracing) [4–7], mixed
WKB-full-wave [8, 9], beam tracing [10, 11] and full-wave
methods [12, 13] have been constructed to study the RF wave
propagation and absorption in fusion plasmas during last two
decades. However, with the availability of high RF power,
the nonlinear phenomena of RF waves become important to
heating and current drive. For example, parametric decay
instabilities of the lower hybrid (LH) waves have been observed
in some experiments [14–19]. A series of theoretical works
have studied the nonlinear phenomena related to LH waves
[20, 21]. With the rapid increase of the computer power,
particle simulation models have been developed to investigate
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the nonlinear issues related to RF heating and current drive in
the slab geometry [22, 23].

In this work, we have developed a particle simulation
model for the nonlinear RF physics by utilizing the existing
physics capability, toroidal geometry and computational power
of the gyrokinetic toroidal code (GTC) [24]. GTC has
been widely applied to investigate turbulent transport [24–28]
and energetic particle physics [29, 30] in fusion plasmas, in
which ions are treated as gyro-centers using the gyrokinetic
equation (for frequency lower than ion cyclotron frequency)
[31]. However, the gyrokinetic ion model is not suitable
for studying RF waves of which frequencies are higher than
the ion cyclotron frequency. On the other hand, due to
the difference in temporal and spatial scales of ions and
electrons, fully kinetic description for both species is not
efficient for the mode frequency between electron and ion
cyclotron frequency. Thus a new simulation model has been
developed in GTC to study RF waves in tokamaks, in which
ions are treated as fully kinetic particles and electrons are
treated as guiding centers by assuming that RF wavelength
(i.e., LH wave) is much longer than electron gyro-radius [32].
This model can handle the physics of the LH wave and ion
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Bernstein wave with a frequency smaller than the electron
cyclotron frequency. In order to overcome the numerical
problems generated by the realistic electron-to-ion mass ratio,
the high frequency Langmuir oscillation and electron cyclotron
motion are removed in the current formulation. The current
electrostatic model is only valid to study LH wave propagation
in tokamak core plasma, where electrostatic approximation
of the LH wave can be satisfied. In this paper, the previous
work [32] has been extended to verify the dispersion relation
of the LH wave with finite parallel wave vector and the linear
electron Landau damping. We have carried out the particle
simulations of the LH wave propagation in both the cylindrical
and toroidal geometries for the first time. As a benchmark
exercise, we launch the LH wave from the tokamak edge
to illustrate the difference of LH wave propagation between
high and low field sides. We find that the poloidal mode
number of the LH wave is not conserved due to the poloidal
asymmetry in the toroidal geometry. The wave propagates
faster in the high field side than the low field side, which is in
agreement with well-known results obtained before by WKB
simulations [4, 33]. On the other hand, the poloidal mode
number of the LH wave is constant in the cylindrical geometry
due to its poloidal symmetry. As the first step of developing
the RF simulation model in GTC, all simulations performed in
this paper are linear.

An outline of the paper follows. A fully kinetic ion
and drift kinetic electron simulation model is presented in
section 2. Section 3 describes the dispersion relation of
the LH wave and its Landau damping on electrons in the
cylindrical geometry. Section 4 presents the GTC simulation
of the LH wave propagation in both the cylindrical and toroidal
geometries, and its comparison with the WKB simulation. We
summarize the results in section 5.

2. Physics model for the LH wave simulation

In this paper, ion dynamics is described by the six-dimensional
Vlasov equation [32]:[

∂

∂t
+ ẋ · ∇ +

Zi

mi
(E + v × B) · ∂

∂v

]
fi(x, v, t) = 0, (1)

where fi, Zi and mi are the ion distribution function, ion
charge and mass, respectively. We use the particle coordinates
x(r, θ, ζ ), where r stands for radial position, θ stands for
the poloidal angle and ζ stands for the toroidal angle of the
toroidal geometry with circular cross section, respectively.
B = Bb = Bθeθ+Bζ eζ is the equilibrium magnetic field.
Equations of motion for ions are described as follows:

ẋ = v, (2)

v̇ = Zi

mi
(−∇φ + v × B) , (3)

where φ is the electrostatic potential. In the LH frequency
range (i.e., ωci � ωLH � ωce, where ωci, ωLH and ωce

stand for the ion cyclotron, LH wave resonant and electron
cyclotron frequency, respectively), ions are considered to be
fully unmagnetized. So the second term on the right-hand side
of equation (3) is dropped in this work.

The drift kinetic description of the electron is valid for the
LH wave since ωLH � ωce, kρe � 1, where k and ρe are the
wave vector of LH wave and electron gyro-radius, respectively.
So electron dynamics is described by the five-dimensional drift
kinetic equation [31]:[

∂

∂t
+ Ẋ · ∇ + v̇||

∂

∂v||

]
fe(X, v||, µ, t) = 0, (4)

where fe is the electron distribution function. The five-
dimensional phase space is defined by the position X(r, θ, ζ ),
the magnetic moment (µ) and the parallel velocity (v||) of
the guiding center. The evaluation of fe is described by the
equations of the electron guiding center motion as follows:

X = v||b + vE + vc + vg, (5)

v̇|| = − 1

me

B∗

B
· (µ∇B − e∇φ) , (6)

where B∗ = B+Bv||/ωce∇ ×b and µ = mev
2
⊥/2B. The E ×B

drift velocity vE, the curvature drift velocity vc and the grad-B
drift velocity vg are given by [34]

vE = cb × ∇φ

B
, (7)

vc = v2
||

ωce
∇ × b, (8)

vg = µ

(meωce)
b × ∇B. (9)

The electrostatic potential φ is solved by the Poisson equation:

∇⊥ ·
[(

1 +
ω2

pe

ω2
ce

)
∇⊥φ

]
= −4π(Zini − ene). (10)

Here, the undesirable high frequency electron plasma
oscillation along the magnetic field line has been suppressed
by considering

∣∣∇2
⊥
∣∣ � ∣∣∇2

||
∣∣ [35, 36]. The second term on the

left-hand side arises from the perpendicular polarization drift
of the electron guiding center.

Equations (1)–(10) form a closed system and are used to
investigate the linear physics of the LH wave in fusion plasmas.

3. Dispersion relation of the LH wave

3.1. Dispersion relation

Dispersion relation benchmark for the GTC simulation of the
LH wave is carried out in the cylindrical geometry (r, θ, z) with
the uniform magnetic field in the z direction. The dielectric
tensor for magnetized plasmas can be expressed as

¯̀̄o =

 S −iD 0

iD S 0
0 0 P


 , (11)

whereS, P andD are the elements of Stix dielectric tensor [37].
In the cold plasma limit of the LH wave, we have S =
1+ω2

pe/ω
2
ce −ω2

pi/ω
2, P = 1−ω2

pe/ω
2 and D = −ω2

pe/(ωωce),

2
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where ω, ωpe and ωpi are the wave, electron plasma and
ion plasma frequency, respectively. We take the electrostatic
approximation for the LH wave N2 � |P | [37, 38], where
N = ck/ω is the index of refraction. Then the eigenmode
equation of the LH wave becomes:

∇ · (
ε · ∇φ

) = 0, (12)

substituting equation (11) into equation (12), we have [9]

∇ · (S∇φ) + ∇|| ·
[
(P − S) ∇||φ

]
+ ∇ · (iDb × ∇φ) = 0.

(13)

The second term on the LHS of equation (13) is mainly due
to the parallel response of electrons. The third term vanishes
for uniform density and magnetic field. With the boundary
condition φ (r0) = φ(a) = 0, where r0 and a are the inner and
outer boundaries respectively, equation (13) has the solution:

φ(r, θ, z) = C

[
Jm(k⊥r) − Jm(k⊥r0)

Nm(k⊥r0)
Nm(k⊥r)

]
ei(mθ−nz/R),

(14)

where m and n are the poloidal and parallel mode numbers in
the cylinder; Jm and Nm are the first and second kind of Bessel
functions with the integer order number m; C is the amplitude
of the eigenmode. One can write down the eigenvalue as

k⊥ =
√

− n2

R2
− P − S

S

n2

R2
, (15)

here the terms related to m number vanish since the poloidal
magnetic field is zero, the eigenvalue k⊥ = lπ/(a − r0) (l
is integer) can be derived by the boundary condition and the
asymptotic solution of equation (14) by referring to Hankel’s
asymptotic expansions of Bessel function at k⊥r � 1, which
is the perpendicular wave vector. Substituting S and P into
equation (15), we get the LH wave eigen-frequency ω = ω0,

ω2
0 = ω2

LH

(
1 +

k2
||

k2
⊥

mi

me

)
, (16)

where k|| = n/R is the parallel wave vector, ωLH =√
ω2

pi/
(

1 + ω2
pe/ω

2
ce

)
is the LH resonant frequency when

k|| = 0. Equation (16) is the cold plasma dispersion relation
of the LH wave in the cylindrical geometry.

An artificial antenna in GTC is used as a source to excite
LH waves by adding the electric potential δφant(r, θ, ζ, t) =
φ̂(r) cos(mθ −nζ ) cos(ωantt), where the subscript ‘ant’ stands
for ‘antenna’. In the cylindrical geometry, ζ = z/R.
According to the driven resonant cavity theory, if the antenna
frequency is equal to the eigen-frequency of the system, the
excited mode will have the maximal growth of the amplitude
[39]. For this benchmark case, plasma density ne = ni =
4.0 × 1013 cm−3, temperature Te = Ti = 40.0 eV (for cold
plasma) and magnetic field B = 2.5 T are uniform, a =
0.3 m,R = 1.0 m, ωpe = 0.81ωce and k||/k⊥ = 0.076. The
m = 4, n = 60 mode is selected by applying filters in the
poloidal and parallel directions. In the simulation, we get
the maximal growth of the LH wave amplitude as shown in

figure 1(a) when the antenna frequency ωant = 0.98ω0, where
ω0 = 3.39ωLH is the theoretical LH wave eigen-frequency.
The difference is less than 2% between the GTC simulation and
the theory. The radial structure of the LH wave from the GTC
simulation is consistent with the analytical theory as shown in
figure 1(b). Figures 1(c) and (d) are the corresponding poloidal
planes of potential structures of the LH wave from theory
and from GTC simulation, respectively. All the simulations
in this paper are linear and the electron density fluctuation is
effectively infinitesimal. It is seen that GTC simulation agrees
with the analytical theory very well.

Next, we carry out simulations in different wavelengths
and ω2

pe/ω
2
ce regimes to measure the eigen-frequency of the LH

wave. Figure 2(a) (fixed k⊥a = 238.1 and ω2
pe/ω

2
ce = 0.66),

figure 2(b) (fixed k||a = 18.0 and ω2
pe/ω

2
ce = 0.66) and

figure 2(c) (fixed k||a = 18.0 and k⊥a = 238.1) show the
dependency of the LH wave frequency on k||, k⊥ and ω2

pe/ω
2
ce,

respectively. The benchmark of the dispersion relation is based
on cold plasma approximation. In these simulations, k||ve/ω

varies from 5.6 × 10−3 to 7.5 × 10−3 and k⊥vi/ω varies from
5.9 × 10−4 to 2.8 × 10−3, thus the kinetic effects from both
species can be ignored. Simulation results are not sensitive
to the number of particles per cell as shown in figure 2(d)
(k||a = 18.0, k⊥a = 238.1 and ω2

pe/ω
2
ce = 0.66). Simulation

results agree very well with the analytical dispersion relation.

3.2. Linear electron Landau damping

LH waves with a high parallel wave vector (k||) can resonate
with electrons when the condition ω = k||ve is satisfied and
thus can deliver their energy to the resonant electrons by the
Landau damping. Therefore, the resonant electrons can be
accelerated in the parallel direction and can drive the plasma
current. To calculate the Landau damping, we need to consider
the finite temperature correction to the dielectric tensor. The
general dispersion relation of the LH wave is

D (ω + iγ, k) = 0. (17)

The linear electron Landau damping rate (γ ) can be calculated
when γ � ω as follows [40]

γ = −DI/
∂DR

∂ω
, (18)

where the real part DR and the imaginary part DI are

DR =
[

1 − ω2
pe

ω2

(
1 +

3k2
||v

2
e

2ω2
+

15k4
||v

4
e

4ω4

)]

×k2
|| +

[
1 +

ω2
pe

ω2
ce

− ω2
pi

ω2

(
1 +

3k2
⊥v2

i

2ω2
+

15k4
⊥v4

i

4ω4

)]
k2
⊥,

(19)

DI = 2
√

π
ω2

peω∣∣k||
∣∣ v3

e

e
− ω2

k2||v2
e , (20)

where ve = √
2Te/me and vi = √

2Ti/mi are the thermal
velocities of electrons and ions, respectively, and k⊥vi/ω < 1
and k||ve/ω < 1 are assumed. Here, the finite electron and ion
temperatures are kept in the real part of the dispersion relation,

3
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Figure 1. (a) Time evolution of the LH wave (m = 4, n = 60) amplitude excited by an artificial antenna in the cylinder, (b) radial profiles of
LH waves from the GTC simulation and from the theory. (c) and (d) are poloidal mode structures of LH waves obtained from the theory and
from the GTC simulation, respectively. The color scale represents the normalized electrostatic potential φ̂ = eφ/Te.
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Figure 2. LH wave frequencies as a function of k|| (a), k⊥ (b) and ω2
pe/ω

2
ce (c). The red crosses and the blue solid lines are the results from

GTC simulation and analytical dispersion relation, respectively, (d) is the convergence of the number of particles per cell Np for LH wave
frequency.

which can affect the LH wave real frequency [41]. We do
not include the finite Larmor radius (FLR) correction for the
electrons in equation (19) since k⊥ρe � 1 [32, 42, 43].

For verifying the GTC simulation of the electron Landau
damping, we focus on the verification of the linear electron

Landau damping of a single mode in the cylindrical geometry.
We choose the mode number randomly, this has no physical
meaning with regard to the real experiments. Other values
of mode numbers can also give the results in agreement with
theory when k|| � k⊥ is satisfied. The simulation of the
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Figure 3. (a) Time history of the LH wave amplitude in the simulation. The dashed line is the numerical fitting. (b) Comparison of damping
rates of LH waves obtained from the GTC simulation and the theoretical calculation in different ξe|| regimes. (c) and (d) are the
convergences of the number of particles per cell Np for LH wave frequency and damping rate, respectively.

(m = 4, n = 100) LH wave with k||a = 30.0, k⊥a = 448.8,
ωpe = 0.51ωce, ω0 = 3.72ωLH, ξi⊥ = ω0/k⊥vi = 6.67 and
ξe|| = ω0/k||ve = 2.33 is performed in the cylinder (a = 0.3 m
and R = 1.0 m). Plasma density ne = ni = 1.0 × 1013 cm−3,
temperature Te = Ti = 10.0 keV and magnetic field B = 2.0 T
are uniform. Here, we choose n = 100 in the simulation so
that the corresponding ξe|| is small enough for linear Landau
damping. The time evolution of the electrostatic potential φ

of the LH wave in the simulation and a numerical fitting are
shown in figure 3(a). The fitting function is defined as φ(t) =
A cos (ωt + α) eγ t , where ω, γ and α are the real frequency,
damping rate, and initial phase of the LH wave, respectively.
The damping rates obtained from the theory γana = −0.18ωLH

and the simulation γsimu = −0.18ωLH are the same. Then
we carry out the simulations with ωpe = 0.51ωce in different
ξe|| regimes, and compare simulation results of the damping
rates with the theoretical calculation as shown in figure 3(b).
Convergence tests indicate that 20 particles per cell are enough
to simulate the linear electron Landau damping as shown in
figures 3(c) and (d). It is well known that the number of
particles per wave length in the particle code needs to resolve
the Maxwellian distribution function. In our simulation, there
are Np×Nr ×Nθ ×Nz = 20×40×50×50 = 2×106 particles
per wavelength, whereNp, Nr , Nθ and Nz are particle number
per cell, grid numbers in radial, poloidal and parallel directions,
respectively. 2 × 106 particles per wavelength are enough to
resolve the Maxwellian distribution very accurately, which can
study the electron Landau damping effectively. Simulation
results agree well with the theoretical calculation.

4. LH wave propagation

4.1. Cylindrical geometry

In order to investigate the LH wave propagation in cylindrical
plasmas, we apply an antenna as a source term to generate
wave-packets at the outer boundary [8, 33] with all the
information including the amplitude and initial phase.

We first derive the theoretical wave pattern in the cylinder
so that we can compare it with the GTC simulation. An antenna
with a Gaussian profile in the poloidal direction is applied in
GTC simulation as

φ(r, θ) = ψ(r)e
−(θ−θ0)

2

�θ2 =
∑
m

�m(r)eimθ , (21)

where θ0, �θ and ψ(r) are the poloidal position, the poloidal
width and the amplitude of the antenna, respectively, and
θ ∈ [θ0 − π, θ0 + π ]. Fourier components of wave-packets
generated by the antenna in the poloidal direction can be
described as follows

�m(r) = �θ

2
√

π
ψ(r)e−imθ0− m2�θ2

4 . (22)

The theoretical wave pattern is considered as the sum of eigen-
functions of equation (13) as

φ(r, θ) =
∑
m

Am�m(r)eimθ , (23)
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Figure 4. The red dashed line in (a) is the theoretical wave pattern and the blue solid line in (a) is the radial profile of the artifical perturbation
of the antenna. (b) is the comparison between radial profiles of wave patterns obtained from GTC simulation and the theory in the cylinder
at time ω0t = 399. (c) and (d) are electrostatic mode structures of LH wave patterns in the poloidal plane obtained from the theory and from
the GTC simulation, respectively, at time ω0t = 399. The color scale represents the normalized electrostatic potential φ̂ = eφ/Te.

where Am is the coefficient of every component, and �m(r)

(with a specific m number) is given as (see equation (14))

�m(r) = Jm(k
(m)
⊥ r) − Jm(k

(m)
⊥ r0)

Nm(k
(m)
⊥ r0)

Nm(k
(m)
⊥ r). (24)

We apply this artificial perturbation (i.e., using antenna) to
produce LH wave patterns in the simulation. The LH wave
could propagate toward the inner boundary from the antenna
and form the theoretical wave pattern. The radial location of
the antenna 0.966a � r � a means that we put our artificial
perturbation in the outer region of the radial simulation domain
as shown in figure 4(a). Combining equations (21)–(24)
together, one can write down the coefficient of equation (23)
as [9]

Am = �m(r)/�m(r), (25)

which can be determined at the antenna region.
For a verification case of the LH wave propagation, we

apply the parameters: uniform plasma density ne = ni =
4.0 × 1013 cm−3, temperature Te = Ti = 10.0 eV(for cold
plasmas) and magnetic field B = 6.0 T. The simulation
is carried out in the cylindrical geometry (a = 0.3 m and
R = 1.0 m) with ωpe = 0.34ωce, k||/k⊥ = 0.033 and
ωant = ω0 = 1.72ωLH. Parallel mode numbers n =
±10 are applied. There is no energy loss of the LH wave
during its propagation, since the plasma is cold. The wave-
packets bounce back and forth between the inner and outer
boundaries of the simulation domain to produce fluctuation

patterns. Finally, the mode structure of the wave pattern is
reconstructed in the simulation region. The radial profile of
the wave pattern which is obtained from the GTC simulation
agrees with the theoretical calculation (see equations (22)–
(25)) in figure 4(b). The GTC simulation of the LH wave
field is shown in figure 4(d), which agrees with the theoretical
calculation shown in figure 4(c). Radial domain contains 10
wavelengths in the current simulation, which is smaller than
real experiments.

4.2. Toroidal geometry

Finally, we carry out simulation of the LH wave propagation
in the toroidal geometry. The plasma density ne = ni =
8.0 × 1013 cm−3 and temperature Te = Ti = 10.0 eV (for
cold plasmas) are uniform. However, B = Bθeθ +Bζ eζ is non-
uniform and the axis value of the magnetic field is Ba = 6.0T .
Other plasma parameters include a = 0.36 m,R = 1.0 m,
ωpe = 0.48ωce and ω0 = 2.99ωLH. Toroidal mode numbers
n = ±15 are chosen for this case, which are much smaller than
experimental parameters. In this case, we have Nr = 500,
Nθ = 400 and Nζ = 480 grid points in the radial, poloidal
and toroidal directions, respectively, 20 particles per cell for
both species, and the time step satisfies with ω0�t < 0.06.
We use 11520 cores for the parallel simulation that runs for
1.5 h. Figures 5(a) and (b) show the propagation of LH
waves in the poloidal plane at different time. The structure
of the wave-packet is formed by the coupling of different

6
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Figure 5. (a), (b) are poloidal contour plots of the normalized electrostatic potential φ̂ = eφ/Te from GTC simulation in the toroidal
geometry, which show the LH wave propagation at ω0t = 33 and ω0t = 71 time, respectively.

poloidal harmonics. In the toroidal geometry, the poloidal
harmonic number m of the wave-packet is not constant due to
the poloidal asymmetry of B [33]. Thus the poloidal position
of the wave-packet will change during its propagation as shown
in figures 5(a) and (b) even though we launch the wave-packet
perpendicular to the poloidal direction [4, 33].

In our simulation, the launched LH wave-packet, which
is initially a standing wave pattern in both the parallel and
poloidal directions, has both the positive and negative parallel
wave vectors (k||). Thus the LH wave will propagate along
the clockwise and counter-clockwise directions in the poloidal
plane because of the two counter-propagations in the parallel
direction and their different evolutions of m number. When
the LH wave propagates along the poloidal angle, the wave
propagates faster in the high field side than the low field side
as shown in figures 5(a) and (b). Finally the original standing
wave pattern becomes two counter-propagating waves because
of the different group velocities in the clockwise and the
counter-clockwise directions as the waves propagate toward
the magnetic axis. We launch the LH wave from the bottom
of the tokamak for benchmarking the code in this case, which
is not true for the real experiments.

A WKB simulation [8, 9] gives similar results to the
LH wave propagation in the toroidal geometry as shown in
figure 6(a). In the WKB simulation, two identical rays are
launched along the clockwise and counter-clockwise directions
at the same time, respectively. The m number decreases when
the ray propagates from low to high field side as shown by
the blue solid line in figure 6(b). The black dashed line in
figure 6(b) shows that the m number increases when the ray
propagates from high to low field side. Figures 6(c) and 6(d)
show that the ray propagating in the high field side has a
larger radial and poloidal group velocity than the low field
side, respectively.

In contrast, the poloidal position of the wave-packet
does not change in the cylinder during its propagation (see
figure 4(d)), since the poloidal mode number m does not
change due to the poloidal symmetry of the equilibrium
magnetic field. Therefore, the standing wave pattern in the
poloidal direction is maintained during its propagation in the
cylinder.

5. Summary

The linear global particle simulation of LH waves has been
successfully carried out by using fully kinetic ion and drift
kinetic electron simulation model in GTC. Antenna excitation
provides the verification of the mode structure of the LH wave,
and the linear dispersion relation of the LH wave is well verified
by the initial perturbation method. The linear electron Landau
damping of the LH wave is verified in the presence of the
finite temperature effect in our simulation, and it agrees well
with the theory. GTC simulations of the LH wave propagation
are performed in both the cylindrical and toroidal geometries.
The comparison of the wave pattern shows a good agreement
between the simulation and the theory. The structure of the
wave pattern is formed due to the coupling of different m

harmonics. In the toroidal geometry, the m number is not
constant due to the poloidal asymmetry of the equilibrium
magnetic field, and its evolution depends on the strength of the
magnetic field and the magnetic shear. The wave propagates
faster in the high field side than the low field side, which agrees
with the WKB simulation. On the other hand, in the cylindrical
geometry, the mode number m does not change due to the
poloidal symmetry of the equilibrium magnetic field.

Particle simulation approach provides a useful tool to
study nonlinear wave-particle interaction, momentum and
energy transport induced by RF waves in tokamak. However,
computational demand of this approach is huge for simulating
real experiments. The numbers of the grid points in radial,
poloidal and toroidal direction (i.e., Nr , Nθ and Nζ ) are of the
order of 1000 each for real experiments. These simulations
require petascale computers on which GTC can run efficiently.
The electrostatic approximation is not valid in the edge region,
and electrostatic description of the LH wave also excludes
some key physics such as mode conversion. Thus, we will
next focus on the electromagnetic simulation and the nonlinear
effects related to the LH wave.
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